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Charcoal peaks in lake-sediment records are commonly used to reconstruct fire histories spanning thousands
of years, but quantitative methods for evaluating the suitability of records for peak detection are largely
lacking. We present a signal-to-noise index (SNI) that quantifies the separation of charcoal peaks (signal)
from other variability in a record (noise). We validate the SNI with simulated and empirical charcoal records
and show that an SNI N3 consistently identifies records appropriate for peak detection. The SNI thus offers a
means to evaluate the suitability of sediment–charcoal records for reconstructing local fires. MATLAB and R
functions for calculating SNI are provided.
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Introduction

Numerous fire-history studies have been published on the basis of
the identification of peaks in lake-sediment records of macroscopic
(typically N100 μm in diameter) charcoal (e.g., see reviews by
Whitlock and Larsen (2001) and Gavin et al. (2007)). Analytical
methods are typically based on a decomposition approach by which a
time series of charcoal accumulation rates (CHAR) is detrended to
isolate background and peak series (e.g., Clark et al., 1996; Long et al.,
1998; Carcaillet et al., 2001; Gavin et al., 2006; Higuera et al., 2009).
The background series represents long-term shifts in fire regimes
(e.g., area burned, fuel characteristics) and taphonomic processes
unrelated to fire occurrence (e.g., slope wash, sediment focusing), and
it may be modeled with a variety of moving-average methods.
Background CHAR is removed from the raw CHAR series by either
subtraction or division to obtain a peak series, which is assumed to
represent charcoal from local fires, plus random variability (i.e.,
noise). To separate the signal of local fires from noise, a threshold
function is determined by one of several methods, and samples
exceeding the threshold are interpreted as local fire episodes.

The decomposition approach has both theoretical (e.g., Clark,
1988; Higuera et al., 2007; Peters and Higuera, 2007) and empirical
(e.g., Millspaugh and Whitlock, 1995; Gavin et al., 2003; Lynch et al.,
2004; Higuera et al., 2010) support suggesting that in records from
small lakes (b ~20 ha), identified peaks represent fires within ca.
500–1000 m of the sampling location. However, sediment–charcoal
rsity of Wash
records are highly variable, both within and between sites (Power
et al., 2008), and some records are clearly more appropriate for peak
analysis than others. While a record with large peaks distinct from
background values fits well within the conceptual framework
outlined above, processes including sediment mixing or reduced
sedimentation rates can create more ambiguous records (Higuera
et al., 2007).

Despite broad adoption of the decomposition approach, methods
for quantifying the suitability of a charcoal record for peak analysis
were lacking prior to the recent introduction of a signal-to-noise
index (SNI; Higuera et al., 2009). Here, we briefly review the rationale
for such a metric and present an improved SNI with a stronger
theoretical basis and more intuitive interpretation. We then validate
the SNI through application to simulated charcoal records, a null
model of random variability, and empirical records from Alaska, and
we compare our new SNI to that introduced by Higuera et al. (2009).
Our results indicate that SNI accurately reflects the prominence of
CHAR peaks and therefore offers an important quantitative tool to
improve the rigor of fire-history reconstructions from sediment–
charcoal records.

Rationale and definition of a signal-to-noise index

Given a detrended CHAR time series (i.e., the peak series) and
corresponding threshold (for an example, see Gavin et al. (2006) and
Higuera et al. (2009)), the sampleswithin a specified timewindowcan
be separated into twodistinct populations: signal (S), containing those
samples greater than the threshold, and noise (N), the remaining
samples, which fall at or below the threshold (Figs. 1a and c). In
practice, N follows a normal distribution reasonably well (e.g., as
ington.
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Figure 1. Illustration of SNI calculation (Eq. (2)) in single 500-yr windows from records CS1 (left) and CS3 (right). (a, c) Interpolated residual CHAR series separated into signal
(S, dark bars) and noise (N, light bars) populations by a threshold (black line). (b, d) Histograms of CHAR values from (a) and (c), respectively, showing separation of S (dark bars)
and N (light bars) for each. Top axis converts CHAR values into standard deviation units from the mean of N, and arrow indicates the mean of S on this axis, fromwhich the proposed
SNI is derived.
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measured by a Lilliefors test), and we assume that noise is normally
distributed in the following discussion.

Metrics for quantifying signal strength relative to accompanying
noise are common in various fields (e.g., the signal-to-noise ratio used
in image processing; Bankman, 2000), with formulation depending on
the application. The SNI introduced by Higuera et al. (2009) compares
the variability in the signal population, var(S), to the variability in the
noise population, var(N):

SNI =
varðSÞ

varðSÞ + varðNÞ ð1Þ

In practice, when the signal and noise distributions are distinct, the
variance of the signal distribution dominates the expression and
SNI→1. This formulation implicitly assumes a positive relationship
between the mean and variance of S, such that a signal distribution
with a large (small) mean also has large (small) variance. While valid
for many charcoal records, this assumption may not always hold. For
example, a record could have a signal population distinct from the
noise population, but with similar variance. In this scenario, an SNI of
~0.5 would under-represent the separation between signal and noise.
Based on comparisons to a null model, Higuera et al. (2009) proposed
that SNIN~0.5 is generally sufficient to warrant peak analysis.

Our aim in constructing a new SNI is to explicitly quantify the level
of separation between S and N. There are numerous established
methods for testing whether two samples arise from distinct
distributions (e.g., the Kolmogorov–Smirnov test). However, since
the use of a threshold implicitly separates S and N into non-
overlapping populations, standard statistical tests are of little value,
because they return very low p-values (typically≪0.01) regardless of
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the apparent prominence of peaks in the record. The SNI presented
below is conceptually based on such tests, but it produces a useful
index reflecting the probability that the values in S could be drawn
from the same population as N. Note that future work utilizing an SNI
for charcoal records should reference this paper or Higuera et al.
(2009) to distinguish the formula used; herein we refer to the SNI
described below unless explicitly stated.
Figure 2. Comparison of SNI of four charcoal records: CS1, CS2, and CS3 are CharSim simula
dark bars) and noise (N, light bars) samples in residual CHAR series, separated by a thres
shows SNI as defined by Higuera et al. (2009) (gray curve) and the new SNI presented
Higuera et al. and 3 based on this study; dashed line). Where no samples exceed the thres
bottom SNI plot; see Eq. (2)).
Specifically, given nS samples in population S and nN samples in
population N, we define:

SNI =
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tions, and RN is a null model of red noise. In each case, the upper panel shows signal (S,
hold (black line); dashed boxes indicate intervals illustrated in Figure 1. Lower panel
here (black curve), and corresponding cutoff values for peak analysis (0.5 based on
hold within the SNI moving window, SNI is reduced by definition (thinned line in the

image of Fig&INS id=


14 R.F. Kelly et al. / Quaternary Research 75 (2011) 11–17
where {S1,S2,…Sns
} are the CHAR values of individual samples in S,

andN and σN are themean and standard deviation, respectively, of the
CHAR values in N. When no sample exceeds the threshold (i.e.,
nS=0), SNI=0 by definition.

Eq. (2) leads to the convenient interpretation of SNI as the average
separation of S and N, scaled by the standard deviation of N. The
metric is thus analogous to the standard score (or “z-score”) used
commonly in statistics to quantify distance from the mean, and
guidelines by which to interpret SNI values emerge from this likeness.

In a normal distribution, the 97.7th and 99.9th percentiles of
observations fall two and three standard deviations above the mean,
respectively. Thus, assuming a normally distributed noise component,
this range (i.e., N + 2σN

� �
− N + 3σN
� �

) typically encompasses the
largest values in N. Furthermore, since the noise and signal
components are separated by definition, the same range represents
a practical lower bound on S. It follows that SNIb3 (indicating that the
samples of S are on average less than three standard deviations above
the mean of N) occurs only when the two populations have little
separation, that is when peaks are poorly defined relative to
background (e.g., Figs. 1c and d). Conversely, SNIN3 results when S
is relatively distinct from N (e.g., Figs. 1a and b). The range of SNI
extends upward from this theoretical baseline without bound,
reflecting ever greater separation between S and N. The factor of
(nN−2)/nN in Eq. (2) is the ratio of the variance of the Student's t
distributionwith nN degrees of freedom to that of the standard normal
(Casella and Berger, 2002), and is included to account for bias due to
the sample size of N.

Eq. (2) describes the SNI for signal and noise samples within a
single time interval. This interval can span an entire record or some
portion thereof. To compute SNI through time, individual SNI values
are calculated for overlapping windows of a record, centered on each
sample. The discrete steps of the moving window may result in sharp
variations over adjacent time steps, which confound interpretation of
the general temporal pattern of SNI. As a final step, therefore, a lowess
smooth function (with window width equal to that used previously)
is applied to obtain the final SNI series.

The choice of window width for computing and smoothing SNI
depends somewhat subjectively on the time scale of interest. A
relatively narrow window, for example, allows SNI to respond strongly
to individual peaks in a charcoal record, but the small sample sizewithin
the window may undermine a robust assessment of overall signal
quality.We suggest thenatural choice ofmatching SNIwindowwidth to
that used in computing background CHAR and/or the local threshold,
and recommend exploring the sensitivity of this selection. Like any
moving-window statistic, SNI is prone to edge effects (e.g., windows
near the ends of the record encompass fewer samples), and thus we
caution against over-interpreting trends in SNI near the ends of a record.
Data sources and quantitative analysis

To validate the SNI, we applied it to simulated charcoal records
representing three hypothetical scenarios and to a null model of
random variability (Fig. 2). Simulated records were generated using
the CharSim model (Higuera et al., 2007), which simulates a spatially
and temporally explicit fire regime, charcoal production and dispersal
Table 1
Summary of SNI for all records.

Site CO RP WK XI, 15–5 XI, 5–
cal ka BP cal ka

Median SNI 4.25 5.41 5.63 6.07 2.09
Min.–max. SNI 2.37–12.60 2.16–15.39 1.99–14.35 0.95–25.05 0.03–
% of record with SNIN3 87 98 92 83 34
processes, primary (airborne) and secondary (slope wash and within-
lake redeposition) deposition, sediment mixing, and sediment
sampling. The CS1 scenario is based on model parameters represent-
ing boreal-forest charcoal records, with high temporal resolution
(15-yr contiguous samples) and little vertical mixing in sediments.
The CS2 scenario differs from CS1 only in that additional sediment
mixing is simulated (vertical mixing depth doubled from 1.0 to
2.0 cm), as might be observed in shallower lakes. In both CS1 and CS2
scenarios, fire sizesmimic those observed in Alaska from 1988 to 2003
(Alaska Fire Service, 2004). By contrast, the CS3 scenario is based on
fires of constant size, equal to the mean fire size of the same dataset.
This scenario creates a charcoal series with a relatively uniform
distribution of CHAR values, and illustrates a record in which peaks
from local fires are difficult to detect due to processes independent of
charcoal taphonomy. The null model record (RN) is a randomly
generated series of red noise with mean, variance, and first-order
autocorrelation comparable to empirical charcoal records described
below. Similar to the use of red noise in other time series applications
(e.g., wavelet analysis; Torrence and Compo, 1998), we assume that
RN reflects properties of a time series that might arise by chance
alone.

As a practical application, we also calculated SNI for four published
charcoal records from Alaska. Sediment cores from Code (CO),
Ruppert (RP), Wild Tussock (WK), and Xindi lakes (XI) in the
south-central Brooks Range were analyzed for macroscopic charcoal
content as described by Higuera et al. (2009). The records were
interpolated to a constant 15-yr resolution before peak analysis.

For all records, peak analysiswas based on themethods describedby
Higuera et al. (2009). Briefly, peak series were defined by subtracting
background CHAR, modeled with a moving median or mode (as in the
published records). Thresholds were determined using a Gaussian
mixture model applied within a movingwindow (“local threshold”); at
every time step, the assigned threshold value corresponds to the 99th
percentile of themodeled noise distribution.We then calculated SNI for
each record as described in the previous section. We used 500-yr
windows for all moving-window procedures. For comparison, we also
computed SNI based on the Higuera et al. (2009) formula (Eq. (1)).
Finally, we calculated the SNI of RN using thresholds based on the 90th
and 75th percentiles of the noise distribution identified by the mixture
model (scenarios RN90 and RN75, respectively) to evaluate the
sensitivity of SNI to threshold choice.
Results

The SNI of the simulated records varies in an intuitiveway, and values
N3 consistently identify records with distinct peaks. Among the
simulated records, SNI values range from ~1 to 10 and exhibit low
within-record variability (Fig. 2). The SNI of CS1 fluctuates around a
median of 5.49 with a minimum of only 3.83. By contrast, CS2 and CS3
have lower SNI overall (median=2.65 and 2.31, respectively), with
values below the theoretical cutoff of 3.00 for themajority of each record.

The null model series has very low SNI, ranging from 0–2.60 with a
median of 1.80 (Table 1; Fig. 2). Lowering the threshold in RN90 has a
minor effect on SNI (median increases to 1.84), but all values remain
below 3.00. The extremely low threshold in RN75 has a more
0 CS1 CS2 CS3 RN RN90 RN75
BP

5.49 2.65 2.31 1.80 1.84 2.11
10.91 3.83–9.87 1.23–4.28 1.95–4.18 0.00–2.60 1.57–2.71 1.81–3.29

100 30 8 0 0 5



Figure 3. Comparison of SNI of empirical charcoal records obtained from lake-sediment cores in Alaska. Legend as in re 2.
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pronounced effect (median SNI=2.11), but still results in SNIb3.00
for 95% of the record (Table 1, Fig. A1).

The empirical charcoal records show substantial variability in peak
heights and SNI over time (Fig. 3). Nevertheless, the SNI at all sites is
usually one to five times the theoretical cutoff of 3.00, corresponding
to large, relatively distinct peaks. Instances of SNIb3.00 occur in each
record, but only intermittently for intervals of b1000 yr. Xindi Lake
offers a notable exception, exhibiting an extended period of SNIb3.00
after ca. 4.5 cal ka BP (Fig. 3). In both the simulated and empirical
records, the two SNI metrics generally show similar patterns through
time, although incongruent scales (in particular, the new SNI has no
upper bound) preclude directly comparing the magnitude of their
fluctuations (Figs. 2 and 3).

Discussion

The SNI introduced here is a promising means to quantify the
suitability of charcoal records for peak analysis, and the theoretically-
based cutoff of SNI=3 works well to identify when peak identifica-
tion is warranted. Applying this cutoff to a simulated high-resolution
record (CS1) indicates a signal consistently well-separated from noise.
By contrast, simulated records with taphonomic-related noise (CS2)
or less-pronounced signals (CS3) result in SNIb3, which cautions
against inferring fire episodes from individual peaks. Equally
important, low SNI successfully identifies our null model of random
variability (RN) as clearly inappropriate for peak analysis (Fig. 2). The
alternative threshold scenarios demonstrate that SNI is relatively
insensitive to threshold choice, and minor changes to the threshold
are unlikely to alter SNI interpretations (Table 1, Fig. A1).

When applied to empirical records, the SNI corroborates visual
inspection and suggests a generally strong signal: all records except XI
have SNIN3 for at least 87% of the record (Table 1, Fig. 3). In some
cases, however, empirical records have periods of SNIb~3, suggesting
that charcoal peaks during these intervals cannot be confidently
separated from noise. In the case of XI, the period since ca.
4.5 cal ka BP was also identified as suspect with the SNI used by
Higuera et al. (2009), and thus peaks in this period were not
interpreted. For all records examined here, the two SNI formulas yield
practically equivalent evaluations based on semi-independent rea-
soning. Thus, while we consider the new index a conceptual
improvement, in practice both metrics quantify signal strength well.

Understanding why a record has a low SNI is important, because
reduced SNI itself could have meaningful interpretations, depending
on the causal mechanisms. Theoretically, a record can have a low SNI
because of the lack of signal and/or the addition of noise. The latter
mechanism is captured by CS2 (Fig. 2), where increased mixing
diminishes the original signal and thus increases noise. The sediment
mixing modeled in CS2 could arise from a number of natural
processes, including wind-driven currents in shallow lakes, bioturba-
tion, slow sediment accumulation, and/or low sample resolution. The
empirical records XI and CO (Fig. 3) provide examples of reduced SNI
due to these mechanisms. In XI, the low SNI after ca. 4.5 cal ka BP
corresponds to decreased sediment accumulation rates, which, in
combination with unchanging sample intervals of 0.5 cm, result in a
resolution N70 yr per sample (Higuera et al., 2009). This low sample
resolution obscures the signal from large charcoal peaks, which are
prominent in other portions of the record. Increased sediment mixing
may explain the period of low SNI in Code Lake, ca. 4.5–3.5 cal ka BP.

Even in the absence of excessive noise, several mechanisms can
contribute to low SNI in a charcoal record by obscuring the signal from
local fires. The simulated record CS3 (Fig. 2) offers one such example.
By dictating a constant, intermediate fire size in CharSim, we
precluded the prominent signal (i.e., high CHAR values) that
otherwise arises from large local fires. The result of dampened signal
is accurately reflected in the low SNI of CS3. It is more difficult to find
empirical examples where the signal from local fires is reduced, but
such a scenario may result in ecosystems with low-severity fire
regimes (Agee, 1993), where charcoal production per fire is low and
varies little.

We conclude with two caveats regarding practical application of
the proposed SNI. First, although the alternative threshold scenarios
demonstrate the general robustness of SNI to threshold choice, they
also highlight that SNI does not equate threshold credibility (e.g., RN75
uses an illogically low threshold but achieves a slightly higher SNI than
the more reasonable RN). Thus, SNI cannot be used as a basis for
threshold selection and must be strictly regarded as a post hoc tool for
evaluating charcoal records with their thresholds determined a priori.

Second, it is important to note the distinction between SNI and the
accuracy of charcoal analysis: SNI simply measures the separation
between predefined S and N populations, whereas accuracy quantifies
the tradeoff between identifying local fires andminimizing the number
of false positives (e.g., Higuera et al., 2007). It is possible for a record to
have low SNI when local fires are in fact correctly identified, or vice
versa. For example, many peaks identified in CS3 actually do reflect
simulated local fires, although the low SNI of the record indicates that
these peaks cannot be confidently considered distinct from noise.
Conversely, a recordwith distinct CHAR peaks fromdistant fires or non-
fire processes (e.g., erosion events) might lead to low accuracy despite
high SNI. With empirical records, of course, the true accuracy of peak
identification is unknown, and thus it is paramount that analysts
interpret SNI in the context of these possibilities, ideally substantiated
with complementary data (e.g., sedimentological indicators of erosion).
Insofar as the assumptions typical of sediment–charcoal analysis hold
and the method for assigning the threshold is robust, such misleading
instances should be rare.

Conclusions

The SNI metric introduced here provides a means to quantitatively
assess whether charcoal records or portions thereof are appropriate for
peak analysis. All charcoal records are influenced bymultiple sources of
variability, but many (including the majority of the empirical records
shown here) nonetheless exhibit clear peaks. For these records, SNI
simply offers quantitative support of subsequent peak analysis.
Inevitably, however, some sediments yield more ambiguous charcoal
series. In these cases, the cutoff value of SNI=3 helps guard against
over-interpretation of a weak signal, and fluctuations in SNI provide a
means of interpreting temporal patterns in the noise itself. Thus, SNI is a
valuable addition to the growing number of analytical tools aimed at
quantifying fire history from sediment–charcoal records.
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