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Abstract

A graph G is said to be d-distinguishable if there is a labeling of the
vertices with d labels so that only the trivial automorphism preserves the
labels. The smallest such d is the distinguishing number, Dist(G). A set
of vertices S ⊆ V (G) is a determining set for G if every automorphism
of G is uniquely determined by its action on S. The size of a smallest
determining set for G is called the determining number, Det(G). The
orthogonality graph Ω2k has vertices which are bitstrings of length 2k
with an edge between two vertices if they differ in precisely k bits. This
paper shows that Det(Ω2k) = 22k−1 and that, if

(
m
2

)
≥ 2k when k is odd

or
(
m
2

)
≥ 2k + 1 when k is even, then 2 < Dist(Ω2k) ≤ m.
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1 Introduction

A labeling of the vertices of a graph G with the integers 1, . . . , d is called a d-
distinguishing labeling if no nontrivial automorphism of G preserves the labels.
A graph is called d-distinguishable if it has a d-distinguishing labeling. The
distinguishing number of G, Dist(G), is the fewest number of labels necessary for
a distinguishing labeling. Albertson and Collins introduced graph distinguishing
in [3]. Over the last few decades, this topic has generated significant interest
and abundant results. See, for instance, [4, 16, 17, 19] for recent works.

Most of the work in the last few decades has been in studying large families
of graphs and showing that all but a finite number in each family have distin-
guishing number 2. Examples of this for finite graphs include: hypercubes Qn
with n ≥ 4 [5], Cartesian powers Gn for a connected graph G 6= K2,K3 and
n ≥ 2 [2, 13, 18], Kneser graphs Kn:k with n ≥ 6, k ≥ 2 [1], and (with seven
small exceptions) 3-connected planar graphs [11]. Examples for infinite graphs
include: the denumerable random graph [14], the infinite hypercube [14], locally
finite trees with no vertex of degree 1 [22], and denumerable vertex-transitive
graphs of connectivity 1 [21].
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Exhaustion shows that the cycles C3, C4, C5 and the hypercubes Q2, Q3 each
have distinguishing number 3. Some infinite graph families that are not 2-
distinguishable are Kn (Dist(Kn) = n) and the complete bipartite graph Km,n

(Dist(Km,n) = max{m,n} for m 6= n, and Dist(Kn,n) = n+ 1). We will see in
Section 3 that orthogonality graphs Ω2k are also not 2-distinguishable.

A useful tool used in finding the distinguishing number is the determining
set [6], a set of vertices whose pointwise stabilizer is trivial. The determining
number of a graph G, Det(G), is the size of a smallest determining set. For
some families we only have bounds on the determining number. For instance,
for the Kneser graph, log2(n+1) ≤ Det(Kn:k) ≤ n−k with both upper and lower
bounds sharp [6]. However, there are families for which we know the determining
number exactly. For instance in Cartesian powers, Det(Qn) = dlog2 ne+ 1, and
Det(Kn

3 ) = dlog3(2n+ 1)e+ 1 [7].
The determining set and the distinguishing number were introduced at dif-

ferent times, by different authors, and for distinct purposes. However, Albert-
son and Boutin connected them in [1], by noting that if G has a determin-
ing set of size d, then there is a (d + 1)-distinguishing labeling for G. Thus
Dist(G) ≤ Det(G) + 1. We will find this relationship useful in pursuing the
distinguishing number of orthogonality graphs.

For a positive integer k, the orthogonality graph Ω2k has as vertices all bit-
strings of length 2k, with two vertices adjacent if their Hamming distance is k.
So Ω2k has the same vertices as the 2k-dimensional hypercube, but with two
vertices adjacent if their bitstrings are orthogonal when considered as vectors
of Z2k

2 . The graph Ω2r is used in quantum information theory to study the cost
of simulating a specific quantum entanglement on r qubits. See [8, 9, 20] for an
introduction to quantum information theory and for the specific situation that
properly coloring Ω2r addresses. Inspired by this quantum situation, Godsil and
Newman studied the independence and chromatic numbers of Ω2r in [12]. Ear-
lier, Ito [15] studied the even component of Ω4k, calling it the Hadamard graph
of size 4k, and investigated its maximal complete subgraphs, its spectrum, and
bounds on its chromatic number. Frankl [10] found the independence number
of such graphs and used it to improve bounds on the chromatic number in the
case when k is an odd prime power. In this paper we study the determining
and distinguishing numbers of the more general Ω2k.

The paper is organized as follows. Definitions and facts about determining
sets, distinguishing labelings, and orthogonality graphs are given in Section 2.
Section 3 examines pairs of twin vertices in Ω2k, proves Det(Ω2k) = 22k−1,
and shows that Ω2k is not 2-distinguishable. Section 4 discusses odd and even
vertices in Ωn, and introduces a quotient graph Ω̃2k. Section 5 shows that
Det(Ω̃2k) ≤ 2k − 1. Finally, Section 6 provides the upper bound for Dist(Ω2k),
and Section 7 provides some open problems for future work.
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2 Background

2.1 Determining Sets and Distinguishing Labelings

Let G be a graph. A subset S ⊆ V (G) is said to be a determining set for G if
whenever ϕ,ψ ∈ Aut(G) so that ϕ(x) = ψ(x) for all x ∈ S, then ϕ = ψ. Thus
every automorphism of G is uniquely determined by its action on the vertices of
a determining set. A determining set is an example of a base of a permutation
group action. Every graph has a determining set since a set containing all but
one vertex of the graph is determining. The determining number of G, Det(G),
is the minimum size of a determining set for G.

Recall that the set stabilizer of S ⊆ V (G) is the set of all ϕ ∈ Aut(G) for
which ϕ(x) ∈ S for all x ∈ S. In this case we say that S is invariant under ϕ and
we write ϕ(S) = S. The pointwise stabilizer of S is the set of all ϕ ∈ Aut(G) for
which ϕ(x) = x for all x ∈ S. It is easy to see that S ⊆ V (G) is a determining
set for G if and only if the pointwise stabilizer of S is trivial.

A labeling f : V (G) → {1, . . . , d} is said to be d-distinguishing if only the
trivial automorphism preserves the label classes. Every graph has a distinguish-
ing labeling since each vertex can be assigned a distinct label. A graph is called
d-distinguishable if it has a d-distinguishing labeling. The distinguishing num-
ber of G, Dist(G), is the fewest number of labels necessary for a distinguishing
labeling.

Lemma 1. Let G be a graph, α ∈ Aut(G), and f : V (G)→ {1, . . . , d} a vertex
labeling. Then f is d-distinguishing if and only if f ◦ α is d-distinguishing.

Proof. It is straightforward to verify that ϕ ∈ Aut(G) preserves the label classes
of f ◦ α if and only if α ◦ ϕ ◦ α−1 preserves the label classes of f .

The following ties together determining sets and distinguishing labelings and
facilitates the work in this paper.

Theorem 1. [1] G is d-distinguishable if and only if it has a determining set S
of size d−1 that can be labeled in such a way that any automorphism of Aut(G)
that preserves the labeling classes of S fixes S pointwise.

Corollary 1. Dist(G) ≤ Det(G) + 1.

Proof. Suppose S is a smallest determining set for G of size d. Label each of
the vertices of S with a different label. Label each of the remaining vertices of
G with the label d + 1. If ϕ ∈ Aut(G) preserves the label classes, then ϕ fixes
each of the Det(G) differently labeled vertices in S. Since S is a determining
set, this means ϕ is the identity. Thus our labeling is a (d + 1)-distinguishing
labeling for G.

As we’ll see in Lemma 2 below, twin vertices play a significant role in the
study of graph symmetry.

Definition 1. Two vertices u, v ∈ V (G) are called twins if they have identical
sets of neighbors. That is, u and v are twins if N(u) = N(v).
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Lemma 2. Let u, v ∈ V (G) be twins. Then the function on V (G) that in-
terchanges u and v and acts as the identity on all other vertices is a graph
automorphism. Thus in any distinguishing labeling members of a twin pair
must have different labels, and further, any determining set must contain at
least one member of each twin pair.

The proof is elementary.

2.2 Orthogonality Graphs

Definition 2. The orthogonality graph Ω2k has as its vertex set all bitstrings
of length 2k,

V (Ω2k) =
{
u = u1u2 . . . u2k | ui ∈ {0, 1}

}
= Z2k

2 ,

with two vertices adjacent if the corresponding bitstrings differ in exactly k
bits. Let 0,1 denote the bitstring of all 0s and all 1s respectively. Define
u+w = (u1 +w1)(u2 +w2) . . . (u2k +w2k) where all bit-sums are taken modulo
2. Note that Ω2k has order 22k and is

(
2k
k

)
-regular.

Example 1. The smallest orthogonality graph Ω2 occurs when k = 1 and is
isomorphic to C4.

Example 2. The orthogonality graph Ω4 is a 6-regular graph of order 16 and
consists of two isomorphic components, each of which is a copy of the circulant
graph C8[1, 2, 3].

Definition 3. The (Hamming) weight of u ∈ V (Ω2k), denoted wt(u), is the
number of 1s in its bitstring. Let 0 and 1 be the bitstrings of length 2k of weight
0 and 2k respectively. The support of u is the set of indices of the bits where
its 1’s occur. That is, supp(u) = {i | ui = 1} ⊆ {1, 2, . . . , 2k}.

Note that wt(u) = |supp(u)|. Also, note that for any u,v ∈ V (Ω2k),
supp(u + v) = supp(u)4 supp(v), where 4 denotes the symmetric difference.
In particular, supp(u+1) is the complement of supp(u). Further, u,v ∈ V (Ω2k)
are adjacent if and only if wt(u + v) = |supp(u)4 supp(v)| = k.

It is easy to verify that the vertex maps described below are automorphisms
of Ω2k.

• Permutation automorphisms. For any permutation σ ∈ S2k, let σ act on
vertices of Ω2k by permuting the order of the bits; that is,

σ(u) = σ(u1u2 . . . u2k) = uσ(1)uσ(2) . . . uσ(2k).

• Translation automorphisms. For u ∈ V (Ω2k), define τu : V (Ω2k) →

V (Ω2k) by
τu(w) = u + w.
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For k ≥ 2, these two families of automorphisms do not exhaust Aut(Ω2k).
For example, we will see in Section 3 that there is an automorphism π0 that
transposes 0 and 1 and leaves all other vertices fixed. The following argument
shows that π0 is not in the subgroup generated by permutation automorphisms
and translation automorphisms.

Any composition of translation automorphisms is itself a translation auto-
morphism; the same is true for permutation automorphisms. Note also that for
all u,w ∈ V (Ω2k) and σ ∈ S2k,

(σ ◦ τu)(w) = σ(u + w) = σ(u) + σ(w) = (τσ(u) ◦ σ)(w).

Thus any automorphism in the subgroup generated by permutations and
translations can be written in the form τu ◦ σ. If τ0 is in this subgroup, then
there exists u ∈ V (Ω2k) and σ ∈ S2k so that π0 = τu ◦ σ. Note that π0(0) = 1
while τu ◦ σ(0) = τu(0) = u. Thus u = 1.

However, π0 fixes all vertices other than 0 and 1 while τ1 ◦ σ takes vertices
of weight 1 to vertices of weight 2k− 1. Since k > 1, this shows π0 is not in this
subgroup.

Orthogonality graphs are highly symmetric in the sense that they are arc-,
edge-, and vertex-transitive. To show this, suppose (x,y) and (u,w) are arcs
(directed edges) of Ω2k. Since (x,y) and (u,w) are edges, each of x+y and u+w
has weight k. Since their supports have the same size, there is a permutation
σ ∈ S2k taking the support of x + y to the support of u + w. Denote by σ
the corresponding permutation automorphism of Ω2k. Then σ(x + y) = u + w.
Now consider the automorphism τu ◦ σ ◦ τx:

(τu ◦ σ ◦ τx)(x) = τu(σ(0)) = τu(0) = u;

(τu ◦ σ ◦ τx)(y) = τu(σ(x + y)) = τu(u + w) = w.

Thus the automorphism τu ◦ σ ◦ τx maps the arc (x,y) to (u,w) proving
that Ω2k is arc-transitive. The edge- and vertex-transitivity of Ω2k follow from
its arc-transitivity.

3 Det(Ω2k) and a Lower Bound on Dist(Ω2k)

To approach the determining number and distinguishing number of Ω2k we will
first want to study the twin vertices in Ω2k.

Lemma 3. The vertices of Ω2k can be partitioned into twin pairs of the form
{u,u+1} for u ∈ Ω2k. In particular, u and w are twins if and only if w = u+1.
Further, there is no set of vertices of size three or more which are pairwise twins.

Proof. Note that the Hamming distance between u and u + 1 is 2k, so u and
u+1 are nonadjacent. Suppose v ∈ N(u). Then wt(v+u) = |supp(v+u)| = k,
and wt((v + u) + 1) = |supp((v + u) + 1)| = 2k − k = k. Thus v ∈ N(u + 1).
Similarly, v ∈ N(u + 1) means that v ∈ N(u). Thus N(u) = N(u + 1) so u
and u + 1 are twins.
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Suppose that w 6= u + 1 and that w is not adjacent to u. We will show that
there is some y ∈ N(w) so that y 6∈ N(u).

Let wt(w+u) = `. Since w is not adjacent to u, ` 6= k. Let r be the smaller
of ` and k. Choose x ∈ V (Ω2k) of weight k so that its support overlaps with r
positions in the support of w + u. Let y = w + x. Since wt(x) = k, y ∈ N(w).
By our choice of support for x, wt(y+u) = wt((w+x)+u) = wt((w+u)+x) =
|k − `|.

Further, since ` 6∈ {0, 2k}, we get that wt((w+u)+x) 6= k. Thus y 6∈ N(u).
Thus w and u are not twins. In particular, each vertex u in Ω2k has a unique
twin, u + 1.

Thus the vertices of Ω2k can be partitioned into twin pairs, and these pairs
have the form {u,u + 1}.

Together Lemma 2 and Lemma 3 prove the following.

Theorem 2. A subset of V (Ω2k) is a determining set for Ω2k if and only if it
contains at least one vertex from each twin pair. Thus Det(Ω2k) = 22k−1.

The following lemma helps us understand how automorphisms of Ω2k inter-
act with twin pairs.

Lemma 4. Any automorphism α ∈ Aut(Ω2k) preserves twin pairs. That is, for
all u ∈ V (Ω2k), α(u + 1) = α(u) + 1.

Proof. Since automorphisms preserve adjacency and nonadjacency, α(u) and
α(u + 1) must be nonadjacent vertices with exactly the same set of neighbors.
By Lemma 3, the only other vertex with exactly the same neighbors as α(u) is
its twin α(u) + 1.

Our knowledge of twin pairs helps us prove in the following that Ω2k is not
2-distinguishable.

Theorem 3. Dist(Ω2k) > 2.

Proof. Suppose there exists a distinguishing 2-labeling f of Ω2k. We will call
the labels red and green. Since twin vertices must get different labels, exactly
half the vertices are red and exactly half the vertices are green. For any vertex
u, let πu be the automorphism that interchanges u and its twin u+1, and leaves
all other vertices fixed. By Lemma 2, f ◦ πu is also a distinguishing 2-labeling.
For each u in our red label class that does not have a 1 in its first bit, apply τu.
This process leads us to a distinguishing 2-labeling, f ′ in which the red label
class is precisely the set of vertices with a 1 in their first bit.

Let σ be the cyclic permutation
(
2 3 · · · (2k)

)
∈ S2k. The corresponding

permutation automorphism is nontrivial and fixes the first bit of each vertex.
Thus σ preserves the label classes. Hence the labeling f ′ is not distinguishing,
and thus by Lemma 1, f is also not a distinguishing labeling.
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4 Structure and Ω̃2k

To find an upper bound on the distinguishing number, it will be useful to un-
derstand the structure of Ω2k. We start with work by Godsil and Newman in
[12] which describes Ω2k in terms of the parity of the weights of its vertices,
concluding the following.

Structure of Ω2k: Each vertex of Ω2k has either even or odd Hamming weight.
Thus the vertices of Ω2k can be partitioned into the set of even vertices and the
set of odd vertices.

1. If k is even, then Ω2k consists of two isomorphic connected components,
namely the subgraph induced by the even vertices and the subgraph in-
duced by the odd vertices. We will refer to these as the even component
and the odd component respectively.

2. If k is odd, then Ω2k is connected and bipartite, with parts the set of even
vertices and the set of odd vertices.

To more fully understand the structure of a graph, it can be useful to study
a quotient graph. Given any equivalence relation ∼ on a vertex set, we define a
corresponding quotient graph G/∼ whose vertices are the equivalence classes of
vertices under ∼, with classes [u] and [w] being adjacent if there exist u′, w′ ∈
V (G) with u ∼ u′, w ∼ w′ and u′w′ ∈ E(G). The quotient graph is smaller,
possibly simpler, and yet preserves some structure of the original graph.

In V (Ω2k) we identify each vertex with its twin. That is, we define u ∼ u+1.
It is easy to verify that this is an equivalence relation. We denote the resulting
quotient graph by Ω̃2k and its vertices by [u] = {u,u + 1} = [u + 1]. Note that

Ω̃2k has order 22k−1 and is 1
2

(
2k
k

)
-regular.

Example 3. The quotient graph Ω̃2 is K2.

Example 4. The quotient graph Ω̃4 is a 3-regular graph of order 8, and consists
of two isomorphic components. By degree considerations alone, Ω̃4 is the disjoint
union of two copies of K4.

Since for any u ∈ V (Ω2k), wt(u + 1) = 2k−wt(u), we see that u is an even
vertex if and only if u + 1 is even. Hence the vertices of the quotient graph can
also be partitioned into even and odd vertices. Moreover, if k is even, Ω̃2k also
consists of an even and an odd component, and if k is odd, Ω̃2k is also bipartite
with an even and an odd part.

In the proof of the proposition that follows, we preview methods that will
be used in Theorem 4 to find an upper bound on Dist(Ω2k) using Det(Ω̃2k).

Proposition 1. Dist(Ω̃4) = 5 and Dist(Ω4) = 4.

Proof. Each K4 component of Ω̃4 has distinguishing number 4; to distinguish
between the two isomorphic components, we need 5 labels in total. Note that
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using 4 labels we can create
(
4
2

)
= 6 distinct label-pairs and then use 5 of these

pairs to label the vertices of Ω̃4. This provides a 5-distinguishing labeling of Ω̃4

with label-pairs, and extends naturally to a 4-distinguishing labeling of Ω4 with
twin pairs in Ω4 assigned the labels from the pairs of assigned to vertices of Ω̃4.
See Figure 1.

Note that if its components cannot be 3-distinguished, then neither can Ω4.
Let C be the component of even vertices of Ω4. Recall from Example 2, that
C = C8(1, 2, 3), so V (C) consists of 4 fs with an edge between every pair of
vertices that are not twins. Suppose we label C with 3 labels. Since there are
precisely

(
3
2

)
= 3 distinct label-pairs for the 4 distinct twin pairs, two twin pairs,

say {u,u + 1} and {w,w + 1}, are assigned the same pair of labels. Without
loss of generality we can assume that the labels on u and w are red and the
labels on u + 1 and w + 1 are green (or replace w with w + 1). Let α be
the vertex map of C that transposes u and w, transposes u + 1 and w + 1,
and fixes all other vertices. Since the complement of C is a set of 4 disjoint
edges between twin pairs, and since α transposes two of these edges, α is an
automorphism of C and thus of C itself. Further α preserves label classes.
Thus this is not a 3-distinguishing labeling of C. We conclude that there is no
distinguishing 3-labeling for C and therefore none for Ω4. Thus we have proved
that Dist(Ω4) = 4.

0000

1111

0011

1100

0101

1010 0110

1001

0001

1110

0010

1101

0100

1011 1000

0111

{0000,   1111}

{1001, 0110} {0101, 1010}

{0011, 1100} {0001, 1110} {0010, 1101}

{0111, 1000} {0100, 1011}

Figure 1: Ω̃4 with a 5-distinguishing labeling and Ω4 with a 4-distinguishing
labeling

Next we will look more carefully at adjacencies within, and automorphisms
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of, Ω̃2k. By Lemma 3,

u and x are adjacent ⇐⇒ u and x + 1 are adjacent

⇐⇒ u + 1 and x are adjacent

⇐⇒ u + 1 and x + 1 are adjacent. (1)

This gives a stronger interpretation of the adjacency of [u] and [x] than is
prescribed in the definition of a quotient graph. One implication of this is given
below.

Lemma 5. Ω̃2k is twin-free.

Proof. Suppose N([v]) = N([u]) in Ω̃2k. Then for all w ∈ V (Ω2k),

w ∈ N(v) ⇐⇒ [w] ∈ N([v]) ⇐⇒ [w] ∈ N([u]) ⇐⇒ w ∈ N(u).

Hence N(v) = N(u). By Lemma 3, v = u + 1 in Ω2k, which means that

[v] = [u] in Ω̃2k.

Now let us look at the automorphism group. By Lemma 4, we can de-
fine a homomorphism φ : Aut(Ω2k) → Aut(Ω̃2k) by φ(α)([u]) = [α(u)] for

all [u] ∈ V (Ω̃2k). For any β̃ ∈ Aut(Ω̃2k), define β ∈ Aut(Ω2k) by arbitrarily
designating one vertex in each twin pair with a subscript of 0, and defining
β(w0) = (β̃([w0])0 and β(w0 + 1) = β(w0) + 1. This shows that φ is surjective.
The kernel of φ consists of all automorphisms of Ω2k that simply interchange
the vertices in some subset of the twin pairs. More precisely, recall that πu is
the automorphism of Ω2k that interchanges u and u + 1 while fixing all other
vertices. There are |V (Ω̃2k)| = 22k−1 such automorphisms and they commute

pairwise. Let U = {[u1], . . . , [un]} ⊆ V (Ω̃2k), and let πU denote the compo-

sition πu1
◦ · · · ◦ πun

. Then ker(φ) = {πU | U ⊆ V (Ω̃2k)} ∼= (Z2)2
2k−1

and

Aut(Ω̃2k) ∼= Aut(Ω2k)/(Z2)2
2k−1

.

5 Determining Ω̃2k

Definition 4. For any [x] ∈ V (Ω̃2k), we define

wt([x]) = (wt(x),wt(x + 1)) = (wt(x), 2k − wt(x)).

To eliminate ambiguity, we assume wt(x) ≤ k and thus that wt(x) ≤ 2k −
wt(x). For example, {00101100, 11010011} ∈ V (Ω̃8) has weight (3, 5).

In what follows, we will be concentrating on the odd vertices in Ω̃2k. Our
goal is to show that every odd vertex in Ω̃2k has a unique set of neighbors among
the set of vertices of weight (k − 1, k + 1).

In the original orthogonality graph, let u be a vertex of odd weight m, with
1 < m ≤ k. Let v be a vertex of weight k. Then u + v is a neighbor of u.
If |supp(u) ∩ supp(v)| = t, then the neighbor u + v of u has weight exactly
m+ k − 2t. See Figure 2.
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supp(u) supp(v )

m-t k-tt

Figure 2: The weight of a neighbor of u is m+ k − 2t.

The number of neighbors of u of weight m+ k − 2t is the number of v such
that |supp(u) ∩ supp(v)| = t, which is(

m

t

)(
2k −m
k − t

)
.

Now, m+ k− 2t = k− 1 ⇐⇒ t = m+1
2 and m+ k− 2t = k+ 1 ⇐⇒ t = m−1

2 .
Using binomial identities,(

m
m+1
2

)(
2k −m
k − m+1

2

)
=

(
m
m−1
2

)(
2k −m
k − m−1

2

)
.

This makes sense because, by Lemma 3, the neighbors of u of weight k+ 1 and
of weight k− 1 can be matched up into twin pairs. Thus, in Ω̃2k, the number of
neighbors of [u] of weight (k − 1, k + 1) is the common value of the expression
in the equation above.

Note that the theorems and propositions that follow are written for k ≥ 1.
However, because their statements involve an odd integer m with 1 < m ≤ k, for
Lemma 6 and Corollary 2 technically k ≥ 3, while for Lemma 7 and Corollary
3 technically k ≥ 4. This does not change the fact that all theorems are true
for all k ≥ 1.

Lemma 6. For distinct odd m,n, both less than or equal to k,(
m
m+1
2

)(
2k −m
k − m+1

2

)
6=
(

n
n+1
2

)(
2k − n
k − n+1

2

)
.

The proof is by binomial computation and is contained in Appendix A.

Corollary 2. For distinct odd m,n, both less than or equal to k, vertices in Ω̃2k

of weight (m, 2k−m) have a different number of neighbors of weight (k−1, k+1)

than vertices in Ω̃2k of weight (n, 2k − n).

We next consider distinct odd vertices in Ω̃2k of the same weight. We start
with a technical lemma about vertices in the original orthogonality graph Ω2k.

Lemma 7. Let 1 < m < k, with m odd. Let u and w be distinct vertices in Ω2k

with wt(u) = wt(w) = m. Then there exists y ∈ V (Ω2k) with wt(y) = k − 1
that is adjacent to u but not to w.
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Proof. We divide into two cases.
Case 1. Assume |supp(u) ∩ supp(w)| = 0. To find a neighbor y of u with

wt(y) = k−1, we must find v ∈ V (Ω2k) of weight k such that y = u+v satisfies

wt(y) = wt(u + v) = |supp(u + v)| = |supp(u)4 supp(v)| = k − 1.

We can construct such a v by selecting m+1
2 positions from each of the

disjoint sets supp(u) and supp(w). This accounts for m+ 1 of the necessary k
positions in supp(v). Note that m < k =⇒ m+1 ≤ k. Thus we need to add (the
nonnegative number) k − (m+ 1) positions from the 2k − 2m positions outside
both supp(u) and supp(w) to supp(v) to achieve wt(v) = k. See Figure 3
for a Venn diagram showing that this is achievable. Note that |supp(y)| =
|supp(u)4 supp(v)| = k − 1, as desired. Moreover, since wt(y + w) = wt

(
(u +

v) + w
)

and |supp(u)4 supp(v)4 supp(w)| = k − 2 < k, y is not adjacent to
w.

supp(u)

supp(v)

supp(w)

m-1

k - (m+1)

2 m+1
m-1

m+1
2 2

2

Figure 3: Case 1: |supp(u) ∩ supp(w)| = 0

Case 2. Assume |supp(u)∩ supp(w)| = r ≥ 1. First suppose r = 2b+ 1 for
some b ≥ 0. Since m is also odd, m = 2a + r = 2a + 2b + 1 for some a ≥ 1.
We can construct an appropriate v by choosing positions for its support in the
following way. Choose a positions from supp(u) \ supp(w), a positions from
supp(w) \ supp(u), b positions from supp(w) ∩ supp(u), and k − (2a + b + 1)
positions from the complement of supp(w)∪ supp(u). Note that the number of
positions outside supp(w)∪supp(u) is 2k−(4a+2b+1) > 2[k−(2a+b+1)], so we
have plenty of positions from which to choose. See Figure 4. It is easy to check
that y = u+v has weight k−1 and that y+w has weight k−(b+1) ≤ k−1 < k,
so y is not adjacent to w.

Now suppose that r = 2b for some b ≥ 1. Since m is odd, m = (2a+1)+r =
2a + 2b + 1 for some a ≥ 0. We can find v, and therefore y, using Figure 5.
That is, we choose a+ 1 positions from supp(u) \ supp(w), a+ 1 positions from
supp(w) \ supp(u), b positions from supp(w) ∩ supp(u), and k − (2a + b + 2)
from the complement of supp(w) ∪ supp(u). We can again easily verify that
y = u + v has weight k− 1 and that y + w has weight k− (b+ 2) ≤ k− 3 < k,
so y is not a neighbor of w.

By passing to the quotient graph, we have the following.
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supp(u)

supp(v)

supp(w)

a b a

a b+1 a

k - (2a+b+1)

Figure 4: Case 2: r = |supp(u) ∩ supp(w)| is odd.

supp(u)

supp(v)

supp(w)

a b a

a+1
b

a+1

k - (2a+b+2)

Figure 5: Case 2: r = |supp(u) ∩ supp(w)| is even.

Corollary 3. Let 1 < m < k, with m odd. Let [u] and [w] be distinct vertices

in Ω̃2k of the same weight (m, 2k−m). Then there exists a vertex [y] of weight
(k − 1, k + 1) that is adjacent to [u] but not to [w].

Combining Corollaries 2 and 3 achieves our goal.

Proposition 2. Each odd vertex in Ω̃2k has a unique set of neighbors among
the set of vertices of weight (k − 1, k + 1).

Now we can explicitly build a determining set for Ω2k and Ω̃2k. For i ∈
{1, . . . , 2k}, let xi denote the vertex of Ω2k represented as a bitstring with a 1

in position i and 0’s elsewhere, with [xi] being the corresponding vertex of Ω̃2k.

Proposition 3. Let D = {[x1], [x2], . . . , [x2k−1]}, which is a subset of the odd

vertices of Ω̃2k. If k is even, then D is a determining set for the odd component
of Ω̃2k. If k is odd, then D is a determining set for Ω̃2k.

Proof. Assume α̃ ∈ Aut(Ω̃2k) fixes pointwise the vertices in D. Any graph

automorphism of Ω̃2k must respect its separation into two components if k is
even, or its bipartition if k is odd. Thus, since α̃ fixes D, α̃ must map odd
vertices to odd vertices and even vertices to even vertices.

One can easily verify that every neighbor of a vertex in D has weight (k −
1, k + 1). Conversely, let y ∈ V (Ω2k) be a vertex of weight k + 1. Then y
is adjacent to xi if and only if i ∈ supp(y); equivalently y can be uniquely
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identified either by which k + 1 of the xi it is adjacent to, or by which k − 1 of
the xi it is not adjacent to. In the quotient graph,

{[y]} =
⋂
{N([xi]) | i ∈ supp(y)}.

If 2k /∈ supp(y), then [y] is the unique common neighbor of k + 1 elements of
D. If 2k ∈ supp(y), then [y] can still be identified by which k elements of D it
is adjacent to and which k − 1 elements it is not adjacent to.

Thus fixing D fixes all vertices in Ω̃2k of weight (k − 1, k + 1). Then by

Proposition 2, α̃ must fix every odd vertex of Ω̃2k. If k is even, then we are
done.

If k is odd, then Ω̃2k is bipartite with each even vertex having only odd
neighbors. By Lemma 5, since Ω̃2k is twin-free, no two nonadjacent (i.e., even)

vertices of Ω̃2k have the same neighborhood. Hence α̃ also fixes all even vertices
and we are done.

Although the preceding proposition does not assert that D is a minimum
size determining set, it is a minimal determining set. Without loss of generality
let D′ = {[x1], [x2], . . . , [x2k−2]}. Let σ ∈ S2k be the transposition permutation
that interchanges 2k − 1 and 2k. Then the corresponding nontrivial permu-
tation automorphism on Ω2k fixes x1, . . .x2k−2 and so the induced nontrivial

automorphism on Ω̃2k fixes the elements of D′.

Corollary 4. Det(Ω̃2k) ≤ 2k − 1.

6 Distinguishing Ω2k

Theorem 4. 2 < Dist(Ω2k) ≤ m, where m is the smallest integer that satisfies(
m

2

)
≥

{
2k, k odd,

2k + 1, k even.

Proof. First assume k is odd. By Proposition 3, D is a determining set for Ω̃2k.
The subgraph of Ω̃2k induced by D is a null graph and so has distinguishing
number |D| = 2k − 1. Thus by Theorem 1, Ω̃2k can be 2k-distinguished.

Next assume k is even. By Proposition 3, D is a determining set for the odd
component of Ω̃2k. If k = 2, then the subgraph of Ω̃2k induced byD is a complete
graph, and otherwise it is a null graph. In all cases, it has distinguishing number
2k−1. Thus by Theorem 1, the odd component of Ω̃2k can be 2k-distinguished.
Since the even component is an isomorphic copy of the odd component, we need
only one more label to distinguish the even component and to distinguish it
from the odd component. Thus Ω̃2k can be (2k + 1)-distinguished.

Suppose there exists an `-distinguishing labeling f̃ of Ω̃2k. To extend it to
a distinguishing labeling on Ω2k, recall that by Lemma 2, twin vertices in Ω2k

must be assigned different labels in any distinguishing labeling.
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If m satisfies (
m

2

)
≥ `,

then we can create ` different label-pairs from m different labels. We assign
these label-pairs to vertices in Ω̃2k according to f̃ , then randomly assign one
label from each label-pair to the members of the corresponding twin pair in Ω2k.

The following argument shows that this creates an m-distinguishing labeling
of Ω2k. Suppose α ∈ Aut(Ω2k) satisfies f(u) = f(α(u)) for all u ∈ V (Ω2k).
Then by Lemma 4,

f(u + 1) = f(α(u + 1)) = f(α(u) + 1),

and so

f̃([u]) = {f(u), f(u + 1)}
= {f(α(u)), f(α(u) + 1)}
= f̃([α(u)]) = f̃(α̃([u]).

By the assumption that f̃ is distinguishing, α̃ is the identity on Ω̃2k, which
means that either α(u) = u or α(u) = u + 1. Since twin vertices have different
labels under f and α respects f , α must be the identity on Ω2k.

The table below shows minimum values of the upper boundm for 2 ≤ k ≤ 18.

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9 9

7 Open Questions

Question 1. Is Det(Ω2k) = 2k − 1 or can it be smaller?

Question 2. Let k ≥ 2; letm be the smallest integer so that
(
m
2

)
≥

{
2k, k odd,

2k + 1, k even.
.

For which k ≥ 2 does Dist(Ω2k) = m?
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A Proof of Lemma 6

Lemma 6 For distinct odd m,n, both less than or equal to k,(
m
m+1
2

)(
2k −m
k − m+1

2

)
6=
(

n
n+1
2

)(
2k − n
k − n+1

2

)
.

Proof. It suffices to show that the sequence(
3

2

)(
2k − 3

k − 2

)
,

(
5

3

)(
2k − 5

k − 3

)
, . . . ,

(
m
m+1
2

)(
2k −m
k − m+1

2

)
is monotone decreasing (where m is largest odd number satisfying m ≤ k), and
for this it suffices to show that for n odd, 1 < n ≤ k,(

n− 2
n−1
2

)(
2k − n+ 2

k − n−1
2

)
>

(
n
n+1
2

)(
2k − n
k − n+1

2

)
.

We use some combinatorial algebra to rewrite the binomial coefficients:(
n
n+1
2

)
=

n!

(n+1
2 )!(n−12 )!

=
n(n− 1)(n− 2)!

(n+1
2 )(n−12 )! (n−12 )(n−32 )!

=
n(n− 1)

(n+1
2 )(n−12 )

(
n− 2
n−1
2

)
=

4n

n+ 1

(
n− 2
n−1
2

)
.

Similar algebraic manipulations yield(
2k − n+ 2

k − n−1
2

)
=

4(2k − n+ 2)

2k − n+ 3

(
2k − n
k − n+1

2

)
.

Substituting in, we are trying to show that(
n− 2
n−1
2

)[
4(2k − n+ 2)

2k − n+ 3

(
2k − n
k − n+1

2

)]
>

[
4n

n+ 1

(
n− 2
n−1
2

)](
2k − n
k − n+1

2

)
.

Canceling equal terms and cross-multiplying, this holds if and only if

(2k − n+ 2)(n+ 1) > n(2k − n+ 3),

which simplifies to k + 1 > n. Since we assumed n ≤ k, we are done.
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[18] Sandi Klavžar and Xuding Zhu. Cartesian powers of graphs can be distin-
guished by two labels. European J. Combin., 28(1):303–310, 2007.
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