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Abstract

A graph G is said to be 2-distinguishable if there is a labeling of the
vertices with two labels so that only the trivial automorphism preserves
the labels. The minimum size of a label class, over all 2-distinguishing
labelings, is called the cost of 2-distinguishing, denoted by ρ(G). For n ≥ 4
the hypercubes Qn are 2-distinguishable, but the values for ρ(Qn) have
been elusive, with only bounds and partial results previously known. This
paper settles the question. The main result can be summarized as: for
n ≥ 4, ρ(Qn) ∈ {1 + dlog2 ne, 2 + dlog2 ne}. Exact values are be found
using a recursive relationship involving a new parameter νm, the smallest
integer for which ρ(Qνm) = m. The main result is

4 ≤ n ≤ 12 =⇒ ρ(Qn) = 5, and 5 ≤ m ≤ 11 =⇒ νm = 4;

for m ≥ 6, ρ(Qn) = m ⇐⇒ 2m−2 − νm−1 + 1 ≤ n ≤ 2m−1 − νm;

for n ≥ 5, νm = n ⇐⇒ 2n−1 − ρ(Qn−1) + 1 ≤ m ≤ 2n − ρ(Qn).

1 Introduction

A labeling of the vertices of a graph G with the integers 1 through d is called
a d-distinguishing labeling if no nontrivial automorphism of G preserves the la-
bels. A graph is called d-distinguishable if it has a d-distinguishing labeling.
The smallest integer for which G has a d-distinguishing labeling is called the
distinguishing number, Dist(G) [3]. Recent work shows that in many graph fam-
ilies, all but a few members are 2-distinguishable. Examples of 2-distinguishable
finite graphs include hypercubes Qn with n ≥ 4 [4], Cartesian powers Gn for a
connected graph G 6= K2,K3 and n ≥ 2 [1, 14, 16], Kneser graphs Kn:k with
n ≥ 6, k ≥ 2 [2], 3-connected planar graphs (with seven small exceptions) [11],
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and for a 2-distinguishable graph G 6= K1,K2 , µ(t)(G) the generalized Myciel-
ski construction applied to G [5]. Examples of 2-distinguishable infinite graphs
include the denumerable random graph [15], the infinite hypercube of dimen-
sion n [15], locally finite trees with no vertex of degree 1 [19], and denumerable
vertex-transitive graphs of connectivity 1 [17].

A label class in a distinguishing labeling of a graph is called a distinguishing
class. If G is 2-distinguishable, the minimum size of a distinguishing class,
over all 2-distinguishing labelings of G, is called the cost of 2-distinguishing
G, denoted ρ(G) [7]. This parameter is also sometimes referred to as the dis-
tinguishing cost of G. Another useful graph parameter that deals with graph
symmetry is the size of a smallest set of vertices whose pointwise stabilizer is
trivial. This is called the determining number, Det(G). There are multiple in-
teresting connections between Det(G),Dist(G), and ρ(G), but for the sake of
efficiency, we will not explore them fully here. However, it is straightforward
to show that a distinguishing class for G has trivial pointwise stabilizer. This
immediately tells us that Det(G) ≤ ρ(G). For some families of graphs, ρ(G)
can even be found in terms of Det(G) [9]. We will encounter this relationship
in this paper. Note that though Det(G) is a lower bound for Dist(G), it is not
always a good lower bound. As seen in [6], the cost of 2-distinguishing can be
an arbitrarily large multiple of the determining number.

The originating work for the cost of 2-distinguishing [7] was in answer to a
question posed by Wilfried Imrich in 2007, “What is the minimum number of
vertices in a label class of a 2-distinguishing labeling for the hypercube?” In
the 2005 paper proving that for n ≥ 4, Qn is 2-distinguishable, Bogstad and
Cowen [4] use smallest distinguishing classes of size n + 2. The best result
known prior to [7] was ρ(Qn) ≈

√
n [13]. In [7] this author showed that for

n ≥ 5, dlog2 ne + 1 ≤ ρ(Qn) ≤ 2dlog2 ne − 1. Though the upper bound is
less than twice the lower bound, and though even the upper bound was much
smaller than previously known results, having only bounds on the distinguishing
cost was not satisfying. A small amount of progress was made in 2013 when a
few exact values were found: for m ≥ 5 and n ∈ {2m−1 − 2, 2m−1 − 1, 2m−1},
ρ(Qn) = m+ 1 [10].

It is fruitful to consider Qn as the nth Cartesian power of K2, denoted Kn
2 .

In 2013, this author shows that for prime graphs H meeting mild hypotheses,
we get ρ(Hk) ∈ {Det(Hk),Det(Hk) + 1} [9], which is useful because results on
Det(Hk) are given in [8]. However, one of the mild hypotheses that is critical for
finding ρ(Hk) is that H have at least 3 vertices. So the technique used for more
general Cartesian powers is not applicable to Qn. In this paper, the technique
from [9] is greatly refined into a tool for proving exact values for the cost of
distinguishing hypercubes. More specifically, if n is greater than but not “too
close” to 2m−2, and less than but not “too close” to 2m−1, then ρ(Qn) = m.
For such n, we can then solve to get ρ(Qn) = 1 + dlog2 ne. Further, if n is “too
close” to 2m−1, we get ρ(Qn) = m + 1, or equivalently ρ(Qn) = 2 + dlog2 ne.
Since by [8], Det(Qn) = 1 + dlog2 ne, this paper concludes that for n ≥ 4,
ρ(Qn) ∈ {Det(Qn),Det(Qn) + 1}.
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To achieve exact values we want for the distinguishing cost for hypercubes, the
big question becomes, “How close is too close?” We define “too close” to 2m−2

as νm−1 and “too close” to 2m−1 as νm − 1. That is, for m ≥ 5, we produce
a sequence of integers {νm} with the property that if 2m−2 − νm−1 + 1 ≤ n ≤
2m−1 − νm, then ρ(Qn) = m. This provides a natural recursive relationship
between {ρ(Qn)} and {νm}, which will allow us to find the value of each for any
n ≥ 4 or m ≥ 5.

The paper is organized as follows. In Section 2, for any subset of vertices in Qn
we define the characteristic matrix of the set, define what it means for a matrix
to be asymmetric, and show that set is a distinguishing class if and only if its
characteristic matrix is asymmetric. This section also gives and proves essential
properties of symmetries of characteristic matrices. We prove the existence of
asymmetric matrices of size m×m,m×(m − 1), and m×bm2 c in Section 3. In
Section 4, we prove a 2016 theorem from Richard Stong [18] giving criteria
for when the asymmetric nature of one matrix guarantees the asymmetry of
another. We finish creating the families of asymmetric matrices that we need to
give an upper bound on the distinguishing cost in Section 5, while a lower bound
is proved in Section 6. In Section 7, we pull the previously established bounds
together to state our final results and to examine its consequences. In Section ??
we connect the results to determining numbers. Finally, in Section 8 we provide
some open problems. Appendix A provides existence proofs for certain small
dimension asymmetric matrices that were claimed in Section 5.

2 Characteristic matrices

In this paper all matrices will be binary. This fact will be mentioned explicitly
at times, but not always.

Definition 1. Let S = {V1, . . . , Vm} be an ordered set of vertices of Qn, each
written as a binary string of length n. Define X to be the m×n matrix whose
ith row contains the coordinates for Vi. Call X a characteristic matrix of S.

We want to explicitly show the correspondence between automorphisms of Qn
and actions on the characteristic matrix. As is usual, we will consider each
coordinate of a binary string representing V ∈ V (Qn) as an element of Z2.

Theorem 1. [12] The map ϕ ∈ Aut(Qn) if and only if there is a permutation
π ∈ Sn and for 1 ≤ i ≤ n, isomorphisms ψi : Z2 → Z2 so that

ϕ(v1 · · · vn) = (ψπ−1(1)(vπ−1(1)) · · · , ψπ−1(n)(vπ−1(n))).

Denote ϕ as (π, {ψi}).

We wish to translate the effect of ϕ = (π, {ψi}) ∈ Aut(Qn) on our ordered subset
S ⊆ V (Qn) to its effect on the characteristic matrix X. Since π permutes the
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coordinates of each vertex, we can consider π as a permutation of the columns
of X. Since each ψi applies one of the two automorphisms of Z2 to coordinate
i of each vertex, we can consider ψi as applying to each entry in column i.
Thus given ϕ = (π, {ψi}) ∈ Aut(Qn), we can consider its action on X. Further
given any π ∈ Sn and any {ψi} ∈ (Aut(Z2))n, there is a natural action of
ϕ = (π, {ψi}) on X that corresponds to a unique ϕ ∈ Aut(Qn). When referring
to the characteristic matrix we will call ϕ a permaut of the columns of X.
Denote the result of applying permaut ϕ to the columns of X by Xϕ. By the
definition of the action of ϕ on X, Xϕ is the characteristic matrix of the ordered
subset ϕ(S). Thus ϕ ∈ Aut(Qn) preserves the set S if and only if X and Xϕ

have the same set of rows, possibly permuted. Denote the result of applying a
permutation σ ∈ Sn to the rows of X by Xσ.

Definition 2. Let X be a a binary matrix. If there exists a column permaut
ϕ and a row permutation σ so that Xσ = Xϕ, then we say that (σ, ϕ) is a
symmetry of X. If the only symmetry of X is the trivial symmetry (id, id), then
we say that X is asymmetric.

A subset S ⊆ V (Qn) is a distinguishing class if and only if the only automor-
phism that preserves S setwise is the trivial automorphism. Thus, we can write
the criterion for a subset S to be a distinguishing class for Qn in terms of its
characteristic matrix in the following way.

Theorem 2. The ordered subset S ⊆ V (Qn) is a distinguishing class for Qn if
and only if its characteristic matrix is asymmetric.

Below are useful tools for working with characteristic matrices, their column
permauts, and their row permutations. Since the proofs are straightforward, for
efficiency, we will mostly point the way to the proofs.

Lemma 1. Let X be a binary matrix with column permauts ϕ, ω and row
permutations σ, τ .

a) Using map composition we easily get that

(i) (Xϕ)ω = Xωϕ

(ii) (Xσ)τ = Xτσ

(iii) (Xσ)α = (Xα)σ.

b) σ preserves the property of two columns being (or not being) isomorphic.

That is, columns i and j of X are isomorphic if and only if columns i and
j of Xσ are isomorphic.

c) ϕ preserves the distinctness (or nondistinctness) of rows.

That is, row i and j of X are distinct if and only if rows i and j of Xϕ

are distinct.
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d) X is asymmetric if and only if Xω is asymmetric if and only if Xτ is
asymmetric.

This is true because (σ, ϕ) is a symmetry of X if and only if (σ, ϕ) is a
symmetry of Xτ if and only if (σ, ωϕω−1) is a symmetry of Xα.

Two different orderings of a set produce characteristic matrices that differ only
by a row permutation. By Lemma 1d), either both are asymmetric or neither
is. Thus we needn’t worry about the order of the set S.

Lemma 2. Let X be an asymmetric m×n binary matrix. Then m < 2n,
n < 2m−1, X has no pair of equal rows, and X has no pair of isomorphic
columns.

Proof. If a m×n binary matrix X has two equal rows, those rows can be trans-
posed by σ without changing the matrix. Thus X has the nontrivial symmetry
(σ, id). Similarly if X has two isomorphic columns there is a nontrivial symme-
try (id, ϕ) of X. If m > 2n then X must have two equal rows, and if n > 2m−1

then X must have two isomorphic columns. Further, if X has distinct rows and
m = 2n, since by Lemma 1c) any permaut ϕ preserves the distinctness of the
rows of X, Xϕ also contains 2n distinct rows. But there are only 2n distinct
binary strings of length n. So X and Xϕ have the same set of rows. Thus there
is a row permutation σ so that Xϕ = Xσ, and X has a nontrivial symmetry.
A similar argument shows that if X has 2m−1 non-isomorphic columns, then X
has a nontrivial symmetry.

Definition 3. Let X be a binary matrix. The weight of a row or column of X
is the number of ones it contains. A column of length m with at most bm2 c ones
is called a low weight column. A matrix X is said to be low weight if each of
its columns is low weight. A column (respectively matrix) can be called strictly
low weight if its weight is strictly less than m

2 (respectively all matrix columns
have weight strictly less than m

2 ). We will use the term high weight to denote
the property of not being low weight.

Given a high weight matrix Y , there is a permaut α so that Y α is a low weight
matrix. Again by Lemma 1d), either both of Y and Y α are asymmetric, or
neither is. Thus for the remainder of this paper we will (mostly) restrict our
attention to low weight binary matrices.

Lemma 3. Let X be a binary m×n matrix. Suppose that (σ, ϕ) is a symmetry
of X. Let ϕ = (π, {ψi}).

a) The permaut ϕ can only permute columns with the same weight. That is,
if column i has weight k then so does column π(i) after applying ψi.

Since a row permutation only rearranges, but does not change, the ele-
ments of each column, σ preserves the number of ones in each column.
Since Xσ = Xϕ, ϕ must preserve the number of ones in each column as
well.
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b) If X is low weight, then ϕ can only provide nontrivial automorphisms on
columns of X that do not have weight precisely m

2 . That is, if X is low
weight and ψi is nontrivial, then column i has weight precisely m

2 . Futher,
if X is strictly low weight, then ϕ = π, a permutation of the columns.

Applying the nontrivial automorphism of Z2 to a strictly low weight col-
umn produces a high weight column. Since by a) above, ϕ can only per-
mute columns of the same weight and all columns of X are low weight, if
the weight of column i is not m

2 , then ψi must be trivial.

c) If X is strictly low weight, then σ can only permute rows with the same
weight. That is, if σ(i)=j, then row i and row j have the same weight.

By b) above, since X is strictly low weight, ϕ = π is a simple permutation
of the columns of X. Thus ϕ rearranges, but does not change, the elements
of each row, ϕ preserves the number of ones in each row. Since Xσ = Xϕ,
σ must also preserve the weight of each row.

d) If X is strictly low weight, and if each row of X has strictly fewer than n
2

ones, then X is asymmetric if and only if its transpose is asymmetric.

By assumption on X, both X and XT are strictly low weight binary
matrices. Thus, by b) above, for each of X and XT the only symmetries
are strict permutations of the rows and strict permutations of the columns.
SinceX andXT exchange the roles of rows and columns, given a symmetry
(σ, ϕ) of X we an exchange the roles of the row permutation and the
column permutation to get a symmetry (ϕ, σ) of XT .

Lemma 4. Let X be a binary matrix and (σ, ϕ) a symmetry of X. If X
has no identical rows and no isomorphic columns, then σ is the identity row
permutation if and only if ϕ is the identity column permaut.

Proof. Let ϕ = (π, {ψi}). Suppose that σ is trivial. Then X = Xσ = Xϕ.
Suppose that π(i) = j with i 6= j. Then by definition of ϕ, column i of X is
isomorphic to column j of Xϕ = X. This contradicts the choice of X. Thus
π is the identity. Further, since σ is trivial, X and Xσ = Xϕ have the same
values in each position of each column. However, since π is trivial, a nontrivial
ψi must change the value of each entry in column i. Thus each ψi is trivial.
Thus ϕ itself is trivial.

Suppose that ϕ is trivial. Then Xσ = Xϕ = X. Thus after performing the row
permutation σ we have the same columns we started with. Suppose σ(i) = j.
Since X has no identical rows, row i and row j differ in some position, say k.
After performing σ, column k has a different value in positions i and j. But
since Xϕ = X, this can’t happen. Thus σ is trivial.

The following lemmas provide tools we will use later in the paper.

Lemma 5. If X is an asymmetric m× r matrix, and Y is m×s matrix with no
pair of isomorphic columns and all column weights different than the column
weights in X, then the m×(r + s) concatenation XY is also asymmetric.
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Proof. Suppose (σ, ϕ) is a symmetry of XY . By Lemma 3a), ϕ preserves weight
classes of columns. Since the weights of columns of X are distinct from the
weights of the columns of Y , ϕ preserves the set of columns of X and of Y .
Thus ϕ can be decomposed into ϕx, the action of columns of X, and ϕy, the
action on the columns of Y . That is, (XY )ϕ = XϕxY ϕy . Recall that σ is
defined on rows of a matrix, without regard the the number of columns. Thus
XϕxY ϕy = (XY )ϕ = (XY )σ = XσYσ, and therefore, Xσ = Xϕx . Since X is
asymmetric by assumption, this means that each of σ and ϕx is trivial. Since
XY has no identical rows and no isomorphic columns by Lemma 4, the triviality
of σ guarantees the triviality of ϕ. Thus XY is asymmetric.

A similar argument proves the following.

Lemma 6. If X is an asymmetric k×n matrix, and Z is a `×n matrix with no
pair of identical rows and all row weights different than the row weights in X,
and the (k+ `)×n concatenation XZ has no column of weight k+`

2 , then XZ is
also asymmetric.

3 Some Small(ish) Asymmetric Matrices

Section 5 will cover the construction of many, mostly large, asymmetric binary
matrices. Here we will construct some basic, mostly small, examples on which
we can build later. We place these constructions in this early section for two rea-
sons. It gives us a chance the use the rules and observations from Section 2, and
we can then use these matrices as building blocks at the beginning of Section 5
without distraction.

Because we will wish to refer to integers within particular intervals, all numerical
intervals in this paper are integer intervals. That is for r < s ∈ Z, [r, s] is the
set of integers inside the real number interval.

Lemma 7. For m ≥ 5 there exist asymmetric binary m×m and m × (m − 1)
matrices.

Proof. Build an asymmetric m×m matrix X in the following way. Let the first
column of X have a one in its first position and zeros elsewhere. For j ∈ [2,m]
let column j have ones in positions j−1 and j, and zeros elsewhere. See Figure 1
for an example of X when m = 7. Note that columns 2 through m have weight
2, while column 1 has weight 1. Further, for j < m, row j of X has ones in
positions j, j + 1, while row m has a one only in the final position.

Suppose there is a symmetry (σ, ϕ) of X. Since m ≥ 5 and each column has
at most 2 ones, X is a strictly low weight matrix. Thus by Lemma 3b), ϕ acts
strictly as a permutation on the columns of X, and by Lemma 3a), it can only
permute columns of the same weight. Thus as the only column of weight 1, the
first column is fixed by ϕ. Since the first column is fixed by ϕ, the first row of
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1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

Figure 1: X with m = 7

Xϕ has a one in its first position. Since the only row of X with a one in its first
position is the first row, σ fixes the first row.

Now assume k < m, that ϕ fixes the first k columns of X, and that σ fixes the
first k rows. By construction, column k + 1 of X has ones in positions k, k + 1
and row k + 1 of X has ones in positions k + 1, k + 2. Since by assumption σ
fixes row k of X, column k + 1 of Xσ has a one in position k + 1. The only
not-yet-known-to-be-fixed column with a one in position k + 1 is column k + 1
of X. Thus column k + 1 of Xσ is column k + 1 of X. Thus ϕ fixes column
k + 1. Now we can conclude that row k + 1 of Xσ has a one in position k + 1.
The only not-yet-known-to-be-fixed row to have a one in position k + 1 is row
k+ 1 of X, so σ fixes row k+ 1. Thus by induction, σ fixes all rows and ϕ fixes
all columns of X, and so (σ, ϕ) is trivial. Therefore X is asymmetric.

Note that if we delete the mth column we still have an asymmetric matrix.

The statement of the lemma below is also true for m ∈ [8, 11]. However, the
proof would be somewhat different, and we only need the lemma as stated.

Lemma 8. For m ≥ 12, there exists an asymmetric m×bm2 c binary matrix.

Proof. Let r = bm2 c. Begin with the r×r asymmetric matrix whose construction
we learned in the proof of Lemma 7. We will see below how to construct an
(m− r)×n matrix Z with no identical rows, all row weights different from those
in X, so that the m×n concatenation XZ is strictly low weight. By Lemma 6,
the resulting XZ will be asymmetric.

Suppose that m is even. Construct Z so that the ith row contains zeros in
positions i, i+ 1, i+ 2 (modulo r) and ones elsewhere. As constructed, Z has no
equal rows, each row of Z has weight r − 3, and each column has weight r − 3.
See Figure 2 for an example of Z for m = 14.

Concatenate X and Z into an m×r matrix XZ whose first r rows are the rows
of X and whose remaining r rows are the rows of Z. Note that each row of Z
has weight r − 3, while the row weights of X are 1 and 2. Since m ≥ 12, r ≥ 6
and r−3 6∈ {1, 2}. Thus the rows weights of Z are distinct from the row weights
of X. The columns of XZ have weights r−2 and r−1, strictly less than m

2 = r,
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0 0 0 1 1 1 1
1 0 0 0 1 1 1
1 1 0 0 0 1 1
1 1 1 0 0 0 1
1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0

Figure 2: Z for m = 14

and so XZ is strictly low weight. Thus by Lemma 6, since X is asymmetric, so
is the concatenation XZ.

Suppose m is odd. Create the matrix Z as above and add a row of zeros to create
Z ′. Then Z ′ has rows distinct rows of weight r − 3 and 0, which are distinct
from the row weights of X. Again, the column weights of the concatenation,
r − 1 and r − 2, are strictly less than r = bm2 c. Again, Lemma 6 provides the
conclusion that XZ is asymmetric.

Lemma 9. For n ≥ 12, there exists an asymmetric bn2 c×n matrix.

Proof. Let s = bn2 c. The construction begins with the asymmetric s×s matrix
X from the proof of Lemma 7. Let Z be the (n − s)×s matrix described in
Lemma 8 above. Let Y = ZT and concatenate X and Y . Note that the
columns of the s × (n − s) matrix Y are nonisomorphic and all columns have
weight different than the column weights of X. Then Lemma 5 provides the
conclusion that the bn2 c × n matrix XY is asymmetric.

4 The Complement Theorem

Before we go on to the rest of our constructions we need a bit more theory. This
section summarizes the work of Richard Stong [18] on characteristic matrices of
sets of vertices of Qn. His results make the conclusions of this paper possible.

Let X be a binary m×n matrix with n < 2m−1, m < 2n, no pair of columns
isomorphic, and no two rows equal. Define Y to be a m×(2m−1−n) binary ma-
trix whose columns are representatives of isomorphism classes not represented
as columns of X. Define Z to be a (2n −m)×n binary matrix whose rows are
binary strings of length n that are not rows of X. We will see in the theorems
below that either all of X,Y, Z have symmetry or none has symmetry.

Lemma 10. Let X be a r×s binary matrix with s < 2r−1, no identical rows,
and no isomorphic columns. Define Y to be a r×(2r−1 − s) binary matrix
whose columns are representatives of the isomorphism classes of columns that
are not represented as columns of X. Then X has symmetry if and only if Y
has symmetry.
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Proof. By Lemma 1d), we may assume that X and Y are low weight matrices
for which the union of the 2r−1 columns of X and Y comprise all 2r−1 low
weight columns of length r. Concatenate X and Y to an r×2r−1 binary matrix,
XY , whose first s columns are columns of X and whose last 2r−1 − s columns
are columns of Y .

Suppose that X has a symmetry (σ, ϕ) with at least one of ϕ, σ nontrivial.
Since X has no identical rows and no isomorphic columns, by Lemma 4, we can
assume both σ and ϕ are nontrivial. Since we can apply σ to a matrix of r rows
regardless of the number of columns, we may apply σ to the rows of XY and
get (XY )σ = XσYσ.

By Lemma 1c), a row permutation preserves the property of two columns being
or not being isomorphic. Since each of the 2r−1 columns of XY represents a
distinct isomorphism class, and σ does not change this distinctness, each of the
2r−1 columns of XσYσ represents a distinct isomorphism class. Further, since
by assumption Xσ = Xϕ, and by definition of ϕ, the columns of Xϕ represent
the same isomorphism classes as the columns of X. Thus, the columns of Yσ
represent the same isomorphism classes as the columns of Y . Thus there is a
permaut ϕ′ of Y so that Y ϕ

′
= Yσ. Thus Y has symmetry.

Switching the roles of X and Y produces the same result. Thus X has symmetry
if and only if Y has symmetry.

An entirely similar proof gives us the following.

Lemma 11. Let X be a r×s binary matrix with no identical rows and no
isomorphic columns and r < 2s. Define Z to be a (2s − r)×s binary matrix
whose rows are distinct and are not rows of X. Then X has symmetry if and
only if Z has symmetry.

Together Lemmas 10 and 11 prove the Complement Theorem below.

The Complement Theorem: [18] With X,Y, Z as defined above, either each
of X,Y, Z has symmetry or none has symmetry.

5 More Asymmetric Matrices

By Lemma 7, for every m ≥ 5 (respectively n ≥ 4) there is an asymmetric
m× (m− 1) (respectively (n+ 1)× n) binary matrix. Now that we are assured
of existence, we will find it useful to be able to refer to the smallest such values.
In particular, for n ≥ 4, denote by µn the fewest number of rows for which there
is an asymmetric µn×n matrix. Similarly, denote by νm the fewest number of
columns for which there is an asymmetric m×νm matrix. It is obvious by defi-
nition that ρ(Qn) = µn. However, there is a tremendous amount of symmetry
in the statements and proofs and usage of µn and νm, so the symmetry of the
notation is natural. To highlight this, we will use the notation µn until we reach
our final conclusions.
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Lemmas 8 and 9 give us the following corollary, which we will find useful later
on.

Corollary 1. For m ≥ 12, νm ≤ bm2 c; for n ≥ 12, µn ≤ bn2 c.

The small cases for m and n resist the more general proofs that we use for
larger m and n. The proofs of results for relatively small m and n are more
detailed than that for Theorem 5, but without being additionally enlightening.
So the proofs of Lemma 12 and 13 and Theorems 3 and 4 have been moved to
Appendix A.

Lemma 12. For n ∈ [4, 12], µn = 5.

Lemma 13. For m ∈ [5, 11], νm = 4.

Theorem 3. For m ∈ [5, 11] and n ∈ [4, 2m−1 − 4], there exists an asymmetric
m×n matrix.

Theorem 4. For n ∈ [4, 12] and m ∈ [5, 2n − 5], there exists an asymmetric
m×n matrix.

Together the lemmas and theorems listed above yield the following statements
which preview the statements for more general m and n given in Theorem 5.

m ∈ [5, 11] & n ∈ [νm, 2
m−1 − νm] =⇒ ∃ an asymmetric m×n matrix.

n ∈ [4, 12] & m ∈ [µn, 2
n − µn] =⇒ ∃ an asymmetric m×n matrix.

Theorem 5. For m ≥ 12 and n ∈ [νm, 2
m−1− νm], there exists an asymmetric

m×n matrix.

Proof. Let r = bm2 c. We will prove this theorem in four steps. First we will
show it is true in the integer interval [νm, r − 1], then in [r,m− 2], then in
[m − 1, 2m−2]. Finally, we will use the Complement Theorem to obtain the
result for [2m−2, 2m−1 − νm].

•[νm, r − 1]: Recall that for m ≥ 12, νm ≤ r by Corollary 1. However, we
may assume that νm < r. Otherwise this interval is empty and unnecessary
for this proof. Start with an asymmetric m×νm matrix X, whose existence is
guaranteed by the definition of νm. Assume X is low weight. We wish to add
j ∈ [1, r − νm − 1] columns to X so that the resulting m×(νm + j) matrix is
asymmetric. By Lemma 5, it is sufficient to find a low weight m × j binary
matrix, Y , with no isomorphic columns whose column weights are distinct from
the column weights of X and concatenate the result with X.

By its dimensions, the number of distinct column weights in X is at most νm.
Further, the number of possible nontrivial column weights in a low weight matrix
is r. Thus there are at least r−νm low weights that do not occur for columns in
X. Thus for each j ∈ [1, r− νm − 1] we can find j nonisomorphic columns with
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weights different from the weights of the columns of X to create a low weight
matrix Y . By Lemma 5, XY is asymmetric.

•[r,m− 2]: Using the proof of Lemma 8 we can construct an asymmetric m×r
matrix X with column weights r−1 and r−2. We wish to add j ∈ [1,m−r−2]
columns toX so that the resultingm×(r+j) matrix is asymmetric. By Lemma 5
it is sufficient to find a low weight m × j binary matrix with no isomorphic
columns whose column weights are distinct from the column weights of X and
concatenate the result with X. Note that if m is even m− r − 2 = r − 2 while
if m is odd m− r − 2 = r − 1.

Note that since the columns of X use only two low weights, there are r − 2
distinct low weights available for a m × j matrix Y . Since m ≥ 12, r ≥ 6 and
so r − 2 > 1. In particular there is some unused nontrivial low weight. Thus
with r − 2 unused low weights we can find up to m − r − 2 ∈ {r − 2, r − 1}
nonisomorphic columns whose weights are distinct from the column weights of
X. Thus we may choose j ∈ [1,m − r − 2] nonisomorphic low weight columns
whose weights are not r − 2 or r − 3. The result is a low weight matrix Y , and
by Lemma 5, XY is asymmetric.

•
[
m− 1, 2m−2

]
: Begin with the m×(m−1) asymmetric binary matrix referred

to in the proof of Lemma 7. Recall that it has columns of weight 1 and 2. For
each j ∈ [1, 2m−2−m+ 1] we wish to find j nonisomorphic low weight columns
with weights distinct from the column weights in X. Thus we only need toshow
that there exist at least 2m−2 −m + 1 non-isomorphic low weight columns of
length m.

There are
∑r
i=3

(
m
i

)
nonisomorphic columns of weight w ∈ [3, r]. Note that if

m is odd
∑r
i=0

(
m
i

)
= 2m−1, while if m is even

∑r
i=0

(
m
i

)
= 2m−1 + 1

2

(
m
r

)
. In

particular, for all m,
∑r
i=0

(
m
i

)
≥ 2m−1. Thus

∑r
i=3

(
m
i

)
−
(
m
0

)
−
(
m
1

)
−
(
m
2

)
≥

2m−1−
(
m
0

)
−
(
m
1

)
−
(
m
2

)
. Thus it is sufficient to show that 2m−1−

(
m
0

)
−
(
m
1

)
−(

m
2

)
≥ 2m−2 −m+ 1. Straightforward algebra shows that this inequality holds

if and only if 2m−1 ≥ m2 −m+ 4 which is true for m ≥ 6.

Thus for each j ∈ [1, 2m−2−m+ 1] we may choose j nonisomorphic low weight
columns of weights distinct from the column weights of X, and create an m× j
matrix Y . By Lemma 5, concatenating X with Y produces an asymmetric
matrix of the desired dimensions.

•
[
2m−2, 2m−1 − νm

]
: For each n ∈

[
2m−2, 2m−1 − νm

]
, we see that n′ =

2m−1 − n ∈ [νm, 2
m−2]. By the work above, there is an asymmetric m×n′

matrix, and then by the Complement Theorem this guarantees the existence of
an asymmetric m×n matrix.

An entirely similar proof shows that

Theorem 6. For n ≥ 12 and m ∈ [µn, 2
n − µn] there exists an asymmetric

m× n matrix.

12



The existence of the asymmetric m×n matrices for 1) m ≥ 5, n ∈ [νm, 2
m−1 −

νm] and 2) n ≥ 4, m ∈ [µn, 2
n − µn] provide upper bounds on µn and νm

respectively. That is, we have proved the following.

Theorem 7. Let m ≥ 5, n ≥ 4. If n ∈ [νm, 2
m−1 − νm] then µn ≤ m.

Theorem 8. Let m ≥ 5, n ≥ 4. If m ∈ [µn, 2
n − µn] then νm ≤ n.

6 A Lower Bound

We will now use the tools from Sections 2, 4, and 5 to get a lower bound on the
cost of 2-distinguishing hypercubes.

Example 1. Since Q1, Q2, Q3 are not 2-distinguishable, for all m ∈ N there is
no m×n asymmetric matrix with n ∈ [1, 3]. In particular, this is true for m = 5.
Thus ν5 ≥ 4. Further, by exhaustion there is no m×4 asymmetric matrix for
m ∈ [1, 4]. Thus µ4 ≥ 5. Since by Bogstad and Cowen [4] ρ(Q4) = 5, there
a distinguishing class for Q4 consisting of 5 vertices, Using Theorem 2, we can
conclude that there is an asymmetric 5 × 4 matrix. Thus we have ν5 = 4 and
µ4 = 5.

Lemma 14. For m ≥ 5, 2m−1 − νm < 2m − νm+1.

Proof. We will break the proof of this fact into three cases: m ∈ [5, 10], m = 11,
and m ≥ 12.

•m ∈ [5, 10]: By Lemma 13, for m ∈ [5, 11], νm = 4. Thus for any m ∈ [5, 10],
νm+1 − νm = 0. This tells us immediately that 2m−1 − νm < 2m − νm+1 for
m ∈ [5, 10].

•m = 11: Again by Lemma 13, ν11 = 4. Now we will show that ν12 = 5. By
Example 1, µ5 = 4. If there was an asymmetric 12×4 matrix, the Complement
Theorem would guarantee the existence of an asymmetric (24 − 12)×4 matrix.
But since µ4 = ρ(Q4) = 5, this is not possible. The same true is for n ∈ {2, 3} as
argued in Example 1. Thus ν12 ≥ 5. Further we can build an asymmetric 12×5
matrix in the following way. Start with the asymmetric 5×4 matrix described
in Lemma 7. Find a complementary 5×(24 − 4) matrix, Y , whose columns are
the 12 low weight columns that are not columns of X. By the Complement
Theorem, since X is asymmetric, so is Y . It is easy to check that the rows of Y
have weights 3, 4, and 5. In particular, Y has no rows of weight 6 or more. Thus
by Lemma 3d), Y T is an asymmetric 12×5 matrix. Now we can conclude that
ν12 = 5. Finally get a proof of this lemma, we compute 210 − ν11 and 211 − ν12
to see the strict inequality we are looking for.

•m ≥ 12: Since each of νm, νm+1 is positive, the magnitude of their difference
is less than either of their magnitudes. For k ≥ 12, by Corollary 1, there is an
asymmetric k×bk2 c matrix. Thus, νk ≤ bk2 c, and we get that |νm+1 − νm| <
bm+1

2 c. Further for m ≥ 3, bm+1
2 c < 2m−2. Putting these together we get,

|νm+1 − νm| < 2m−1. Simple algebra then yields 2m−1 − νm < 2m − νm+1.
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Corollary 2. For all n ≥ 13, there exists a unique integer m so that n ∈
[2m−2 − νm−1, 2m−1 − νm].

Theorem 9. Let n ≥ 4,m ≥ 5. If n > 2m−1 − νm then ρ(Qn) > m.

Proof. By Lemma 2, if n ≥ 2m−1 then there is no asymmetric m×n binary
matrix. Suppose that 2m−1−νm < n < 2m−1. Then n = 2m−1−νm+k for some
k ∈ [1, νm − 1]. By the Complement Theorem, the existence of an asymmetric
m×(2m−1−νm+k) matrix guarantees the existence of an asymmetric m×(νm−
k) matrix. But since k is strictly positive, this contradicts the minimality in the
definition of νm. Thus there is no asymmetric m×n matrix with n > 2m−1−νm.

Let m be fixed. If whenever we have n > 2m−1 − νm we are guaranteed that
n > 2k−1 − νk for all k ∈ [5,m − 1], then we could conclude that µn 6∈ [5,m]
and thus that µn > m. By induction, it is enough to show that 2m−1 − νm ≤
2m − νm+1, which we have by Lemma 14.

Thus when n > 2m−1 − νm, ρ(Qn) > m.

The analogous statements given below have very similar proofs to those above.

Lemma 15. For n ≥ 4, 2n − µn < 2n+1 − µn+1.

Corollary 3. For all m ≥ 12, there exists a unique integer n so that m ∈
[2n−1 − µn−1, 2n − µn].

Theorem 10. Let n ≥ 4,m ≥ 5. If m > 2n − µn then νm > n.

7 The Distinguishing Cost

Putting together Theorems 7 and 10, other supporting work, and recalling that
µn = ρ(Qn) we get our final result.

Theorem 11. For n ∈ [4, 12], ρ(Qn) = 5. For n ≥ 13, ρ(Qn) = m where m is
unique integer for which n ∈ [2m−2 − νm−1 + 1, 2m−1 − νm].

Proof. Lemma 12, for n ∈ [4, 12], µn ≥ 5. By Theorem 4, µn ≤ 5. Thus for
n ∈ [ν5, 2

4 − ν5], ρ(Qn) = 5.

By Corollary 3, for n ≥ 13, there exists a unique m so that n ∈ [2m−2− νm−1 +
1, 2m−1−µm]. By Theorem 7, given such an m, ρ(Qn) ≤ m and by Theorem 10,
ρ(Qn) > m− 1. Thus ρ(Qn) = m.

A proof entirely similar to that for Theorem 11, gives us the following. Note
that this would require the symmetric statements from Section 6.

Theorem 12. For m ∈ [5, 11], νm = 4. For m ≥ 12, νm = n where n is the
unique integer for which m ∈ [2n−1 − µn−1 + 1, 2n − µn].
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We can work recursively to compute ρ(Qn) for any n ≥ 4 in the following way.
From Theorem 11, we get when n ∈ [4, 12], µn = 5, and by Theorem 12, when
m ∈ [5, 11], νm = 4. We can then use Theorem 11 repeatedly to get that for
n ∈ [13, 210−4], µn = 1+dlog2(n+4)e. For n > 210−4, we need νm for m > 11.
Use Theorem 12 to find that when m ∈ [24−µ4 + 1, 25−µ5], νm = 5. Then we
again use Theorem 11 to compute µn = 1+dlog2(n+5)e for n ∈ [210−3, 226−5].
We can continue in this manner.

However, even without specific values for νm, we can get a good idea of the
value for µn = ρ(Qn).

Theorem 13. If n ≥ 5, then ρ(Qn) ∈ {1 + dlog2 ne, 2 + dlog2 ne}.

Proof. By computation this is true for n ∈ [4, 12]. By Theorem 11, for n ≥ 13,
µn = ρ(Qn) = m if and only if 2m−2 − νm−1 + 1 ≤ n ≤ 2m−1 − νm. This
is equivalent to m − 1 + (νm − νm−1) ≤ 1 + log2(n + νm) ≤ m. Note that
νm−νm−1 ∈ {0, 1}. From here it is easy to see that m = d1+log2(n+νm)e = 1+
dlog2(n+νm)e. Since m = µn here, 1+dlog2(n+νm)e = 1+dlog2(n+νµn

)e. By
Corollary 1, νm ≤ m

2 and µn ≤ n
2 . Thus µn ≤ 1 + dlog2(n+νn

2
) ≤ 1 + dlog2(n+

n
4 )e = 1+dlog2

5
4 +log2 ne ≈ 1+d0.322+log2 ne ∈ {1+dlog2 ne, 2+dlog2 ne}.

As discussed in the Introduction, we can sometimes use determining numbers to
write our results on distinguishing cost. Since for all n, Det(Qn) = 1 + dlog2 ne
[8], we immediately get the following corollary.

Corollary 4. For n ≥ 4, ρ(Qn) ∈ {Det(Qn),Det(Qn) + 1}.

8 Open Questions

Question 1. Find a more direct way to express the recursive relationship be-
tween n, µn,m and νm.

Question 2. Recall that for any 2-distinguishable graph G, Det(G) ≤ ρ(G).
Further, we have found that most Cartesian products of prime graphs have
ρ(G) ∈ {Det(G),Det(G) + 1} [9], and certain Kneser graphs have ρ(G) =
Det(G) + 1 [10]. Classify the graphs for which ρ(G) ∈ {Det(G),Det(G) + 1}.
Or ρ(G) = Det(G). Or ρ(G) = Det(G) + 1.

A Existence Proofs for Small Values

Lemma 12: For n ∈ [4, 12], µn = 5.

Proof. By Lemma 2, there can be no asymmetric 4× n matrix if n ≥ 23. Since
Q1, Q2, Q3 are not 2-distinguishable, there is no asymmetric 4 × n matrix for
n ∈ [1, 3]. By the Complement Theorem this implies that there is no asymmetric
4× n matrix for n ∈ [5, 7]. Further, one can see by exhaustion that there is no
4 × 4 asymmetric matrix. matrix for n ∈ [4, 6]. By the Complement Theorem
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this implies that there is no asymmetric 4×n matrix for n ∈ [4, 8]. Thus for all
n, µn ≥ 5. For n ∈ [4, 12], we will argue the existence of an asymmetric 5×n
matrix, which will prove that µn ≤ 5.

Let X be the binary matrix in Figure 3. Suppose that (σ, ϕ) is a symmetry of
X. Since X is a strictly low weight matrix, by Lemma 3b) and 3c), ϕ and σ can
only permute columns and rows of the same weight. Since the 1st column is the
only one of weight 1, it is fixed by ϕ. This forces the 1st row to have a 1 in its
1st position. Since the 1st row is the only row with a 1 in its 1st position, the
1st row is fixed by σ. Since the 3rd row is the only one of weight 4 and the 5th

row is the only one of weight 2, these rows are fixed by σ. Since the 2nd column
is the only one with 1,0,0 in its 1st, 3rd, 5th positions respectively (coming from
fixed rows 1, 3, and 5), the 2nd column is fixed by ϕ. Since the 2nd row is the
only not-yet-known-to-be-fixed row with a 1 in position 2, (coming from the
fixed 2nd column), the 2nd row is fixed by σ. Now that we know that all of rows
1, 2, 3, 5 are fixed, the 4th row must be fixed by σ as well. Thus σ is trivial.
Since X has no identical rows and no isomorphic columns, by Lemma 4, ϕ is
trivial as well. Thus X is asymmetric.

1 1 0 0 0 1 0 0
0 1 1 0 0 0 0 1
0 0 1 1 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 0 1 0 1 0


Figure 3: 5×7 asymmetric matrix, X

ERROR: The above is 5 by 8

Arguments similar to the one above show that for n ∈ [4, 7] the submatrix con-
sisting of the first n columns of X is asymmetric. Using these 5×n asymmetric
matrices, the Complement Theorem guarantees 5×n asymmetric matrices for
n ∈ [24 − 7, 24 − 4]. Together, these prove the existence of asymmetric 5×n
matrices with n ∈ [4, 24 − 4] as desired.

Lemma 13: For m ∈ [5, 11], νm = 4.

Proof. As argued in Example 1, for all m, νm ≥ 4. The matrices in Figure 4
prove the existence of asymmetric m×4 matrices for m ∈ [5, 8]. (The reader
may check that these matrices are indeed asymmetric. Start by looking at which
columns must be fixed by their unique column weight. For those with no column
of weight m

2 , Lemma 3c) can be used to do the same with row weights. The
rest takes only a little logic.) Using these matrices, the Complement Theorem
guarantees the existence of m× 4 asymmetric matrices for m ∈ [8, 11]. Thus we
have proved that for m ∈ [5, 11], νm ≤ 4 and we have the desired equality.

Theorem 3: For m ∈ [5, 11], and n ∈ [4, 2m−1 − 4] there exists an asymmetric
m×n matrix.
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1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0




1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1
0 0 1 0
0 0 0 0





1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 0





1 1 0 0
0 1 0 0
1 0 0 0
0 0 0 1
1 0 1 0
1 1 1 0
0 1 1 1
0 0 0 0


Figure 4: m× 4 asymmetric matrices for m ∈ [5, 8].

Proof. For each m ∈ [5, 11] we construct an asymmetric m×n matrix for n ∈
[4, 2m−1 − 4]. The proof is broken into three cases based on the the size of m.
These cases are m = 5, m = 6, and m ∈ [7, 11].

•m = 5: The truth of this case is proved in Lemma 12.

•m = 6: By Lemma 13, we know that there exists an asymmetric 6×4 ma-
trix. Further by Lemma 7, there exist asymmetric 6×5 and 6×6 matrices with
columns of weight 1 and 2. Note that there are 1

2

(
6
3

)
= 10 binary strings of

length 6 and weight 3. For j ∈ [1, 10] create a 6×j matrix with nonisomorphic
columns of weight 3. Concatenate the result with the asymmetric 6× 6 matrix
with columns of weight 1 and 2 identified above. By Lemma 5, the resulting
6×(4 + j) matrix is asymmetric. Thus there are asymmetric 6×n matrices for
n ∈ [4, 24]. Using the Complement Theorem, this guarantees the existence of
asymmetric 6×n matrices for n ∈ [25 − 16, 25 − 4]. Overall, we now have proof
of existence of asymmetric 6× n matrices for n ∈ [4, 25 − 4] as desired.

•m ∈ [7, 11]: For m ∈ [7, 11], we know by Lemma 13 that there exists an
asymmetric m×4 matrix, X . Next we will show that for n ∈ [5,m − 1] there
are asymmetric m×n matrices.

We can achieve an asymmetric 7×5 matrix by concatenating a 7× 1 matrix of
zeros to the 7×4 matrix in Figure 4 without disturbing the asymmetry. Further
by Lemma 7, we can achieve an asymmetric 7×6 matrix.

The asymmetric 8× 4 matrix X given in Lemma 13 has no column of weight 1.
Thus for j ∈ [1, 3], we can concatenate an m×j matrix with distinct columns
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of weight 1 to X. By Lemma 13, the resulting 8×n matrices with n ∈ [5, 7] are
asymmetric.

For each of m ∈ [9, 11], we achieve an m×4 matrix X by using the Complement
Theorem on the (16−m)×4 matrix from the proof of Lemma 13 and then using
the nontrivial automorphism of Z2 on each column. It is easy to check that each
such X, has no column of weight 1. Thus for j ∈ [1,m− 5], we can concatenate
an m×j matrix consisting of distinct columns of weight 1 with the m×4 matrix.
By Lemma 5 the resulting 9×n matrices with n ∈ [5, 8] are asymmetric.

Thus we now have asymmetric m×n matrices for m ∈ [7, 11] and n ∈ [4,m− 1].
Now to complete this to n ∈ [4, 2m−2].

For m ≥ 5, by Lemma 7, there exist asymmetric m×m matrix with columns of
weight 1 and 2. Choose such a matrix for each m and denote it by X. One can
easily check that for m ∈ [7, 11],

(
m
3

)
≤ 2m−2 −m. Since for each of these m,

3 < m
2 , weight 3 columns of length m are necessarily nonisomorphic. Thus for

each j ∈ [1, 2m−2 −m] we can construct an m×j matrix Y of distinct weight
3 columns. Concatenate Y with X to construct an m×(m + j) matrix. By
Lemma 5, the concatenated matrix is asymmetric.

Thus we have proved the existence of asymmetric m×n matrices for m ∈ [5, 11]
and n ∈ [4, 2m−2]. Using the Complement Theorem these asymmetric matrices
guarantee the existence of asymmetric m×n matrices for n ∈ [2m−2, 2m−1 −
4].

An entirely similar proof gives us the analogous result below.

Theorem 4: For n ∈ [4, 12], and m ∈ [5, 2n − 5] there exists an asymmetric
m×n matrix.
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