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experience



early career research experience

∙ As faculty supervising undergraduates
∙ As a graduate student working with undergraduates
∙ As a graduate student starting research in commutative algebra
∙ As an undergraduate doing mathematical research with faculty
supervision



boij-söderberg theory



background

Let S = k[x1, x2, . . . , xd] (standard graded k-algebra over a field k).

Let M be a finitely generated graded S-module with minimal graded free
resolution

F. : 0← ⊕jS(−j)β0,j(M) ← ⊕jS(−j)β1,j(M) ← · · · ← ⊕jS(−j)βd,j(M) ← 0,

where βi,j(M) is the number of minimal degree j generators of Syzi(M).
The Betti diagram of an S-module M tabulates the ranks of the free modules
in the free resolution of M:

β(M) =

0 1 · · · i · · · n
0 β0,0(M) β1,1(M) · · · βi,i(M) · · · βn,n(M)
1 β0,1(M) β1,2(M) · · · βi,i+1(M) · · · βn,n+1(M)
...

...
...

...
...

j β0,j(M) β1,1+j(M) · · · βi,i+j(M) · · · βj,n+j(M)
...

...
...

...
...

.



computing betti tables



boij-söderberg theory

An S-module M is called pure if there is a degree sequence
d = (d0 < d1 < · · · < dn) such that βi,j(M) = 0 if j ̸= di.

Given a degree sequence d, define π (d) to be the Betti diagram of the∗ pure
module M with the associated degree sequence d = (d0 < d1 < · · · < dn)
with a (technical) scaling factor. Given two degree sequences c and d, we say
c ≤ d if ci ≤ di for each i.

Theorem (Boij–Söderberg (n ≤ 2), Eisenbud–Schreyer (all n))

For every S-module M, there exists a unique list of totally ordered degree
sequences d(1) < · · · < d(r) so that

β(M) =
∑

qiπ
(
d(i)

)
where qi ∈ Q≥0.

Furthermore, given β(M), there is a (fast) decomposition algorithm for
determining qi, d(i), and the elimination order. BoijSoederberg.m2



Example (M = S/(x, y2, z2))

β(M) =

0 1 2 3
0: 1 1 . .
1: . 2 2 .
2: . . 1 1

= 8
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= 8 · π (0, 1, 3, 5) +8 · π (0, 2, 3, 5) +8 · π (0, 2, 4, 5) .

Elimination Table:
0 1 2 3

0: 3 1 . .
1: . 3 2 .
2: . . 3 3



cones



convex cones

Posets and Simplicial Cones

•

• •

• embeds into V in a “good” way:



the cone of betti diagrams

Let V be the Q-vector space of (column finite) infinite matrices (ai,j+i).

Definition

Define the cone of Betti diagrams of finitely generated S-modules to be

BQ(S) :=


∑
M fg
S-mod

aMβ(M)
∣∣∣∣∣ aM ∈ Q≥0,

almost all aM are zero

 ⊆ V.

Goal

Describe BQ(S).



examples of early career research projects



decompositions of complete intersections

The Betti diagram of a complete intersection module M = S/(f1, . . . , fd) over
the ring S is determined by the degrees of its minimal generators.
Example

If S = k[x] and M = S/(f), then β(M) = deg(f) · π (0,deg(f)).

If S = k[x, y] and M = S/(f, g), then

β(M) = deg(f)deg(g) · π (0,deg(f),deg(f) + deg(g))
+ deg(f)deg(g) · π (0,deg(g),deg(f) + deg(g)) .

Question

For S = k[x1, . . . , xd] and any complete intersection M where

β(M) = q1π
(
d(1)

)
+ · · ·+ qrπ

(
d(r)

)
,

is there a uniform formula for determining qj and d(j) in terms of deg(fi)?



the codim 3 case

Proposition (G–Jeffries–Mayes-Tang–Raicu–Stone–White 2015, MSRI
graduate workshop)

Let S be k[x1, x2, x3], and let I = (f1, f2, f3) be an ideal generated by a
homogeneous regular sequence with deg(fi) = ai where ai ≤ ai+1 for all i.
Then

β(S/I) = a1a2(a2 + a3) · π (0, a1, a1 + a2, a1 + a2 + a3)
+ a1a2(a3 − a1) · π (0, a2, a1 + a2, a1 + a2 + a3)
+ 2a1a2(a1 + a3 − a2) · π (0, a2, a1 + a3, a1 + a2 + a3)
+ a1a2(a3 − a1) · π (0, a3, a1 + a3, a1 + a2 + a3)
+ a1a2(a2 + a3) · π (0, a3, a2 + a3, a1 + a2 + a3) .



what about codim ≥ 4?

Question

Does the decomposition behave uniformly for all d?

Some Elimination Tables:
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I = (x2, y3, u4) I6 = I+ (v6) I11 = I+ (v11) I13 = I+ (v13)



recursive decomposition algorithm

Theorem (G-Huben∗-Stone 2017)

Let c > 1. Consider a complete intersection

R = k[x1, . . . , xc, xc+1]/(xa11 , . . . , x
ac
c , x

ac+1
c+1 ).

There is an inductive algorithm for decomposing βc+1 = β(a1, . . . , ac, ac+1)
into a sum of pure diagrams (with rational coefficients, not necessarily
positive) that starts with the Boij-Söderberg decomposition of βc.

Furthermore, when ac+1 ≫ 0, the new inductive algorithm produces the
same output as the Boij-Söderberg algorithm.



example
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∙ Phase 1: Calculate the decomposition of
βc and form coefficients for first third of βc+1.
Eliminate entries of βc+1 according to
elimination order of βc.

∙ Phase 2: Eliminate entires left to right
along the columns.

∙ Phase 3: Finish eliminating the diagram
using the dual of the pure diagrams from the
first half of the algorithm.



corollaries

Consider β = β(a1, . . . , ac, ac+1) with ac+1 large enough. Then

1. the recursive algorithm produces the original BS decomposition;

2. the elimination order of β is compatible with that of β(a1, . . . , ac);

3. the elimination order of β stabilizes;

4. the coefficients from Phase 1 and Phase 3 are given by linear
polynomials in ac+1;

5. the number of terms in the BS decomposition of β is constant.



the subcone generated by complete intersection modules

Theorem (Annunziata∗ G Hawkins∗ Sullivan∗ 2014, WVC REU)

A ray of the sub-cone generated by complete intersections is extremal if and
only if the Betti diagram of a complete intersection lies on that ray.

Furthermore, there is a factorial time algorithm for decomposing a ray in the
cone into extremal rays.



advice to advisors

1. Be ambitious for your students....
2. ...but have a plan for the project.
3. Build research skills into your courses.
4. Don’t do the project for your students.
5. Have regular research meetings.
6. Your best local collaborators may be your students. (-SL)



http://people.hamilton.edu/cgibbons/files/research/
research-preliminary-tasks.pdf

http://people.hamilton.edu/cgibbons/files/research/research-preliminary-tasks.pdf
http://people.hamilton.edu/cgibbons/files/research/research-preliminary-tasks.pdf
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