## BOIJ-SÖDERBERG THEORY AS AN INTRODUCTION TO RESEARCH IN COMMUTATIVE ALGEBRA

Courtney Gibbons Hamilton College Joint Mathematics Meetings 2019 AMS Special Session on Commutative Ring Theory: Research for Undergraduate and Early Graduate Students

### EXPERIENCE

#### EARLY CAREER RESEARCH EXPERIENCE

- · As faculty supervising undergraduates
- $\cdot\,$  As a graduate student working with undergraduates
- $\cdot\,$  As a graduate student starting research in commutative algebra
- · As an undergraduate doing mathematical research with faculty supervision



BOIJ-SÖDERBERG THEORY

Let  $S = \Bbbk [x_1, x_2, \ldots, x_d]$  (standard graded  $\Bbbk$  -algebra over a field  $\Bbbk).$ 

Let M be a finitely generated graded S-module with minimal graded free resolution

$$F_{\cdot}: 0 \leftarrow \oplus_{j} S(-j)^{\beta_{0,j}(M)} \leftarrow \oplus_{j} S(-j)^{\beta_{1,j}(M)} \leftarrow \cdots \leftarrow \oplus_{j} S(-j)^{\beta_{d,j}(M)} \leftarrow 0,$$

where  $\beta_{i,j}(M)$  is the number of minimal degree j generators of Syz<sub>i</sub>(M).

The **Betti diagram** of an S-module M tabulates the ranks of the free modules in the free resolution of M:

|        |   | 0                    | 1                    |       | i                  | <br>n                  |
|--------|---|----------------------|----------------------|-------|--------------------|------------------------|
| β(M) = | 0 | $\beta_{0,0}(M)$     | β <sub>1,1</sub> (M) |       | $\beta_{i,i}(M)$   | <br>$\beta_{n,n}(M)$   |
|        | 1 | $\beta_{0,1}(M)$     | $\beta_{1,2}(M)$     | • • • | $\beta_{i,i+1}(M)$ | <br>$\beta_{n,n+1}(M)$ |
|        | : |                      | :                    |       | :                  | : .                    |
|        | j | β <sub>0,j</sub> (M) | $\beta_{1,1+j}(M)$   |       | $\beta_{i,i+j}(M)$ | <br>$\beta_{j,n+j}(M)$ |
|        | : |                      | :                    |       | :                  | :                      |

```
Emacs@Mac-21719
               🥱 🔏 🖣 💼 🔍
                      X
New File Open Open Directory Close Save Undo Cut Copy Paste Search
R = ZZ/8821[x,y,z];
I = R^1/(x, y^2, z^2);
betti res M
U:**- BS-talk.m2
                              (Macaulav2 +1)
Macaulay2, version 1.12
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
i3 : betti res M
           0123
o3 = total: 1 3 3 1
d3 : BettiTally
```

An S-module M is called **pure** if there is a **degree sequence**  $\mathbf{d} = (d_0 < d_1 < \cdots < d_n)$  such that  $\beta_{i,j}(M) = 0$  if  $j \neq d_i$ .

Given a degree sequence d, define  $\pi$  (d) to be the Betti diagram of the\* pure module M with the associated degree sequence d = (d<sub>0</sub> < d<sub>1</sub> < ··· < d<sub>n</sub>) with a (technical) scaling factor. Given two degree sequences c and d, we say c  $\leq$  d if c<sub>i</sub>  $\leq$  d<sub>i</sub> for each i.

### Theorem (Boij–Söderberg ( $n \le 2$ ), Eisenbud–Schreyer (all n))

For every S-module M, there exists a unique list of totally ordered degree sequences  $d^{(1)} < \cdots < d^{(r)}$  so that

$$\beta(\mathsf{M}) = \sum \mathsf{q}_{\mathsf{i}} \pi\left(\mathsf{d}^{(\mathsf{i})}\right)$$

where  $q_i \in \mathbb{Q}_{\geq 0}$ .

Furthermore, given  $\beta(M)$ , there is a (fast) decomposition algorithm for determining q<sub>i</sub>, d<sup>(i)</sup>, and the **elimination order**. BoijSoederberg.m2

**Example (** $M = S/(x, y^2, z^2)$ **)** 

$$\beta(\mathsf{M}) = \frac{\begin{vmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & . & . \\ 1 & . & 2 & 2 & . \\ 2 & . & . & 1 & 1 \end{vmatrix}$$

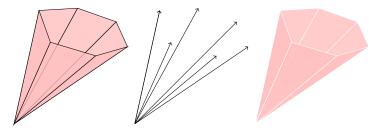
 $= 8 \cdot \pi (0, 1, 3, 5) + 8 \cdot \pi (0, 2, 3, 5)$ 

 $+8 \cdot \pi (0, 2, 4, 5).$ 

Elimination Table:

|    | 0 | T | 2 | J |
|----|---|---|---|---|
| 0: | 3 | 1 |   |   |
| 1: |   | 3 | 2 |   |
| 2: |   |   | 3 | 3 |
| -  | . |   | 3 | 3 |

CONES



Posets and Simplicial Cones



embeds into 𝔍 in a "good" way: ↓



Let  $\mathbb V$  be the  $\mathbb Q$  -vector space of (column finite) infinite matrices ( $a_{i,j+i}$ ). Definition

Define the cone of Betti diagrams of finitely generated S-modules to be

$$B_{\mathbb{Q}}(S) := \left\{ \sum_{\substack{M \text{ fg} \\ S-\text{mod}}} a_M \beta(M) \, \middle| \, \substack{a_M \in \mathbb{Q}_{\geq 0}, \\ \text{almost all } a_M \text{ are zero}} \right\} \subseteq \mathbb{V}.$$



Goal

Describe  $B_Q(S)$ .

### EXAMPLES OF EARLY CAREER RESEARCH PROJECTS

The Betti diagram of a complete intersection module  $M = S/(f_1, \ldots, f_d)$  over the ring S is determined by the degrees of its minimal generators. Example

If 
$$S = k[x]$$
 and  $M = S/(f)$ , then  $\beta(M) = deg(f) \cdot \pi (0, deg(f))$ .

If  $S = \Bbbk[x, y]$  and M = S/(f, g), then

$$\beta(M) = \deg(f) \deg(g) \cdot \pi (0, \deg(f), \deg(f) + \deg(g))$$
$$+ \deg(f) \deg(g) \cdot \pi (0, \deg(g), \deg(f) + \deg(g)).$$

### Question

For  $S = \Bbbk[x_1, \ldots, x_d]$  and any complete intersection M where

$$\beta(\mathsf{M}) = \mathsf{q}_1 \pi\left(\mathsf{d}^{(1)}\right) + \dots + \mathsf{q}_r \pi\left(\mathsf{d}^{(r)}\right),$$

is there a uniform formula for determining  $q_j$  and  $d^{(j)}$  in terms of deg( $f_i$ )?

# Proposition (G–Jeffries–Mayes-Tang–Raicu–Stone–White 2015, MSRI graduate workshop)

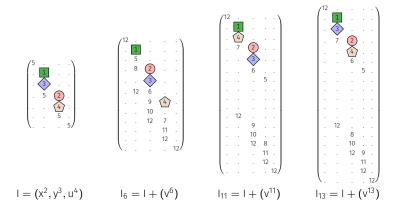
Let S be  $\Bbbk[x_1,x_2,x_3]$ , and let I = (f<sub>1</sub>,f<sub>2</sub>,f<sub>3</sub>) be an ideal generated by a homogeneous regular sequence with deg(f<sub>i</sub>) = a<sub>i</sub> where a<sub>i</sub> ≤ a<sub>i+1</sub> for all i. Then

$$\begin{split} \beta(\mathsf{S}/\mathsf{I}) &= & \mathsf{a}_1 \mathsf{a}_2(\mathsf{a}_2 + \mathsf{a}_3) \cdot \pi \left( \mathsf{0}, \mathsf{a}_1, \mathsf{a}_1 + \mathsf{a}_2, \mathsf{a}_1 + \mathsf{a}_2 + \mathsf{a}_3 \right) \\ &+ & \mathsf{a}_1 \mathsf{a}_2(\mathsf{a}_3 - \mathsf{a}_1) \cdot \pi \left( \mathsf{0}, \mathsf{a}_2, \mathsf{a}_1 + \mathsf{a}_2, \mathsf{a}_1 + \mathsf{a}_2 + \mathsf{a}_3 \right) \\ &+ & \mathsf{2} \mathsf{a}_1 \mathsf{a}_2(\mathsf{a}_1 + \mathsf{a}_3 - \mathsf{a}_2) \cdot \pi \left( \mathsf{0}, \mathsf{a}_2, \mathsf{a}_1 + \mathsf{a}_3, \mathsf{a}_1 + \mathsf{a}_2 + \mathsf{a}_3 \right) \\ &+ & \mathsf{a}_1 \mathsf{a}_2(\mathsf{a}_3 - \mathsf{a}_1) \cdot \pi \left( \mathsf{0}, \mathsf{a}_3, \mathsf{a}_1 + \mathsf{a}_3, \mathsf{a}_1 + \mathsf{a}_2 + \mathsf{a}_3 \right) \\ &+ & \mathsf{a}_1 \mathsf{a}_2(\mathsf{a}_2 + \mathsf{a}_3) \cdot \pi \left( \mathsf{0}, \mathsf{a}_3, \mathsf{a}_2 + \mathsf{a}_3, \mathsf{a}_1 + \mathsf{a}_2 + \mathsf{a}_3 \right). \end{split}$$

### Question

Does the decomposition behave uniformly for all d?

Some Elimination Tables:



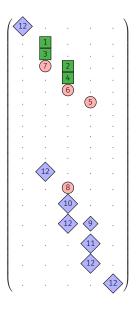
### Theorem (G-Huben\*-Stone 2017)

Let c > 1. Consider a complete intersection

$$R = \Bbbk[x_1, \dots, x_c, x_{c+1}] / (x_1^{a_1}, \dots, x_c^{a_c}, x_{c+1}^{a_{c+1}}).$$

There is an inductive algorithm for decomposing  $\beta_{c+1} = \beta(a_1, \dots, a_c, a_{c+1})$  into a sum of pure diagrams (with rational coefficients, not necessarily positive) that starts with the Boij-Söderberg decomposition of  $\beta_c$ .

Furthermore, when  $a_{c+1}\gg 0,$  the new inductive algorithm produces the same output as the Boij-Söderberg algorithm.



Phase 1: Calculate the decomposition of  $\beta_c$  and form coefficients for first third of  $\beta_{c+1}$ . Eliminate entries of  $\beta_{c+1}$  according to elimination order of  $\beta_c$ .

- Phase 2: Eliminate entires left to right along the columns.
- Phase 3: Finish eliminating the diagram using the dual of the pure diagrams from the first half of the algorithm.

Consider  $\beta = \beta(a_1, \dots, a_c, a_{c+1})$  with  $a_{c+1}$  large enough. Then

- 1. the recursive algorithm produces the original BS decomposition;
- 2. the elimination order of  $\beta$  is compatible with that of  $\beta(a_1, \ldots, a_c)$ ;
- 3. the elimination order of  $\beta$  stabilizes;
- the coefficients from Phase 1 and Phase 3 are given by linear polynomials in a<sub>c+1</sub>;
- 5. the number of terms in the BS decomposition of  $\beta$  is constant.

### Theorem (Annunziata\* G Hawkins\* Sullivan\* 2014, WVC REU)

A ray of the sub-cone generated by complete intersections is extremal if and only if the Betti diagram of a complete intersection lies on that ray.

Furthermore, there is a factorial time algorithm for decomposing a ray in the cone into extremal rays.

- 1. Be ambitious for your students....
- 2. ...but have a plan for the project.
- 3. Build research skills into your courses.
- 4. Don't do the project for your students.
- 5. Have regular research meetings.
- 6. Your best local collaborators may be your students. (-SL)



### http://people.hamilton.edu/cgibbons/files/research/ research-preliminary-tasks.pdf