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When are centralizers of finite subgroups of Out(Fn) finite?

Debra L. Boutin

Abstract. This paper gives necessary and sufficient conditions for the cen-
tralizer of a finite subgroup of outer automorphisms (resp. automorphisms) of
a finitely generated free group to be finite. If G is realized by its action on a
graph, Krstić’s work produces generators of the centralizer of G in terms of
graph isomorphisms and certain graph transformations. This paper examines
the behavior of these graph transformations to determine criteria for a cen-
tralizer to be finite. This result extends that of Krstić and Vogtmann on finite
centralizers. It also gives alternate criteria to that provided by Pettet for a
free-by-finite group to have a finite outer automorphism group.

1. Introduction
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Consider the automorphism γ of the graph Γ in Figure 1, where γ cyclically
permutes the edges connecting vertices a and b as well as the edges connecting
vertices b and c. When considered as an automorphism of π1(Γ, a), γ has a finite
centralizer. However, the automorphism of π1(Φ, u) induced by the analogous graph
automorphism φ of Φ, (φ cyclically permutes the edges connecting vertices u and
v as well as the edges connecting vertices v and w) has an infinite centralizer. The
purpose of this paper is to describe easy-to-check criteria for distinguishing these
cases.

There are a number of reasons to study centralizers of finite groups of outer
automorphisms. Brown [1, page 261] showed that in order to compute the integral
Euler characteristic of Out(Fn) it is sufficient to know the rational Euler character-
istics of centralizers of finite order elements of Out(Fn). Smillie and Vogtmann [8]

Partially supported by a National Defense Science and Engineering Graduate Fellowship.

c©0000 (copyright holder)
1



2 DEBRA L. BOUTIN

gave an effective method for computing the rational Euler characteristic of Out(Fn)
(which can be thought of as the centralizer of the trivial automorphism) and we
can hope to apply similar techniques to compute the rational Euler characteristic
of the more general centralizers and thus find the integral Euler characteristic of
Out(Fn).

Pettet [7], in completing the classification of the finitely generated groups whose
full automorphism groups are virtually free, recently provided necessary and suf-
ficient conditions for the outer automorphism group of a free-by-finite group E to
be finite. If E is given by the short exact sequence 1 → Fn → E → K → 1, the
conjugation action of E on Fn induces a homomorphism θ : K → Out(Fn). Since
Out(E) is finite if and only if the centralizer of θ(K) is finite, the results in this
paper provide alternate criteria for determining the finiteness of Out(E). Pettet
obtains results in terms of the action of E on a tree T , and equivalently, in terms
of the graph of groups determined by the quotient T/E. In this paper, we obtain
results in terms of the of θ(K)-graph T/Fn.

To learn about the finiteness properties of automorphism groups of free-by-finite
groups, Krstić and Vogtmann [6] studied the finiteness properties of centralizers of
finite subgroups of Out(Fn) by creating a space on which a given centralizer acts
with finite stabilizers and finite quotient. From their results we can easily derive
criteria for, and a description of, a finite centralizer C(G) when a finite subgroup
G < Out(Fn) has a realization in which all edge stabilizers are normal in their
associated vertex stabilizers; that is: we can derive the statement of Theorem 3.4
for outer automorphisms. Using methods different from those of [6], in Theorem 3.4
we find analogous results for this specific type of subgroup in both Out(Fn) and in
Aut(Fn). We then extend the result in Theorem 4.3 to criteria for a general finite
subgroup of Out(Fn) or Aut(Fn) to have a finite centralizer.

This paper is organized as follows: In Section 2 we will briefly look at necessary
background definitions and ideas; we will also sketch the definitions and results of
Krstić that will be used in this work. In Section 3 we state and prove Theorem 3.4,
while in Section 4 we state and prove Theorem 4.3.

2. Foundations

2.1. Background and Definitions. We shall adopt the standard combina-
torial definition of a graph [9, page 91] Γ. The set of vertices of Γ is denoted V (Γ)
while the set of oriented edges of Γ is denoted as E(Γ). The oriented edge e is in-
cident with two vertices, ι(e), τ(e), called the respectively the initial and terminal
vertices of e. The involution e �→ ē takes e to its inverse edge ē. Then ι(ē) = τ(e)
and τ(ē) = ι(e). An edge path is a concatenation of oriented edges e1 · · · ek so that
τ(ei) = ι(ei+1). An edge path is said to be freely reduced if for each i, ei+1 �= ēi.
Any edge path can be freely reduced by deleting such canceling pairs. The edge
length of an edge path is the number of edges in the path once it is freely reduced.
A G-graph is a graph with an action of G on it. We will write this as a left action.
A pointed G-graph is a G-graph where each element of G fixes the basepoint, which
we will usually denote by ∗. A graph isomorphism is a bijective map ϕ : Γ1 → Γ2

that takes vertices to vertices, edges to edges and is equivariant with respect to the
incidence relation τ (and therefore ι) on oriented edges. That is, τ(e) = τ(f) in
the graph Γ1 if and only if τ(ϕ(e)) = τ(ϕ(f)) in the graph Γ2. An isomorphism of
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(pointed) G-graphs is a graph isomorphism that is G-equivariant (and that takes
the basepoint of one to the basepoint of the other).

We shall assume, as is usual in geometric group theory, that no element of G
inverts any edge of the graph. If necessary, we could add a vertex to the center of
each inverted edge to avoid the problem. The orbit of x ∈ E(Γ) ∪ V (Γ), denoted
O(x), is the set of all images of x under the action of G. We will denote the set
of images of e and its inverse edge ē, by O(e, ē), and will often consider this as a
subgraph of Γ. A reduced G-graph is a G-graph in which each edge orbit, O(e, ē),
when considered as a graph, has non-trivial fundamental group. Equivalently, a
G-graph is reduced if it contains no G-invariant forests.

If G is a subgroup of A then the centralizer of G in A is the set of all a ∈ A for
which aga−1 = g for all g ∈ G. Thus in order to talk about the centralizer of G, it
is essential to know in what larger group we are working. If G ≤ Out(Fn), C(G) is
the centralizer of G in Out(Fn) and if G ≤ Aut(Fn), C(G) is the centralizer of G in
Aut(Fn). We will work in Out(Fn) throughout this paper, with the modifications
necessary for Aut(Fn) contained in parentheses. Denote by p : Aut(Fn) → Out(Fn)
the canonical projection map.

Both Culler [2] and Zimmermann [10] have independently proved that if G
is a finite subgroup of Out(Fn) then there is a G-graph Γ and an identification
π1(Γ) ↔ Fn so that the induced action of G on π1(Γ) is identical to the action of
G on Fn as a group of outer automorphisms. If G is a finite subgroup of Aut(Fn)
we can assume that the graph Γ is a pointed G-graph and that the induced action
of G on π1(Γ, ∗) is identical to the action of G on Fn as a group of automorphisms.
In each of these cases, we say that G is realized by its action on Γ.

2.2. Krstić’s Theorem. In [4], Krstić proved that if we choose the “right”
kind of graph realizing G, we can read off the generators of the centralizer of G from
the graph. In Out(Fn) the “right” kind of graph is a reduced G-graph; in Aut(Fn)
it is a pointed reduced G-graph. If G is realized by the (pointed) reduced G-graph
Γ and ϕ is a (basepoint preserving) G-equivariant automorphism of Γ, then the
outer automorphism (automorphism) of π1(Γ, ∗) induced by ϕ commutes with the
action of G on π1(Γ, ∗). That is, ϕ induces an element of C(G). Thus we can easily
find some elements of the centralizer by looking at Γ, but since Γ is finite, we can
only find finitely many elements in this way.

Krstić defines another way of G-equivariantly transforming graphs that leads
to more elements of the centralizer. If the reduced (pointed) G-graph Γ contains
oriented edges a and b so that τ(a) = τ(b), a �∈ O(b, b̄) and stab(a) ⊆ stab(b),
we can transform Γ into a new graph by “sliding” the terminal points of edges in
O(a) along appropriate edges in O(b). More specifically, the Nielsen transformation
N = 〈a, b〉 transforms Γ into the (pointed) reduced G-graph N(Γ) which has the
same edge and vertex sets as Γ and whose incidence relation differs only on terminal
points of images of a. If g(a) is an image of a then τ(g(a)) = τ(g(b)) in Γ while
τ(g(a)) = ι(g(b)) in N(Γ). The graphs Γ and N(Γ) are not necessarily isomorphic,
but they do have G-equivariantly isomorphic fundamental groups. In particular,

there is a G-equivariant isomorphism of edge path groupoids Π(Γ)
〈a,b〉−→ Π(N(Γ))

defined on generators by

〈a, b〉 :




g(a) �→ g(a)g(b) ∀g ∈ G
g(ā) �→ g(b̄)g(ā) ∀g ∈ G
c �→ c ∀c �∈ O(a, ā)

.
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Note that since stab(a) ⊆ stab(b) this is well defined. As an isomorphism of path
groupoids, 〈a, b〉 takes a path between vertices v and u in Γ to a path between v
and u in N(Γ). Note that a Nielsen transformation does not move vertices, so in
particular, it does not move the basepoint. Thus by restriction to edge loops at a
basepoint, 〈a, b〉 gives us a G-equivariant isomorphism of fundamental groups.

Example 2.1. In Figure 2 let the generator of Z3
∼= G < Aut(F4) act on Γ by

cyclic permutation of the edges connecting vertices v and w (the orbit of a) and
simultaneously by cyclic permutation of the edges connecting vertices v and u (the
orbit of b). The stabilizers of a and b are trivial and since τ(a) = τ(b) we get a
Nielsen transformation N = 〈a, b〉 yielding the pointed G-graph N(Γ). Notice that
a is an edge path from w to v in Γ while N(a) = ab is an edge path from w to v in
N(Γ).
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Figure 2

We shall use the notation 〈a, b〉 to denote the graph transformation, the isomor-
phism of path groupoids, and the isomorphism of fundamental groups. This should
cause no confusion in context. We will consider Nielsen transformations to act on
the left. Then a product of Nielsen transformations 〈ak, bk〉 · · · 〈a2, b2〉〈a1, b1〉 takes
the graph Γ to Γk through a sequence of Nielsen transformations:

Γ0
〈a1,b1〉−→ Γ1

〈a2,b2〉−→ · · · 〈ak,bk〉−→ Γk.

Notice that the product of Nielsen transformations 〈a, bk〉 · · · 〈a, b2〉〈a, b1〉 makes
sense precisely when bk · · · b2b1 is an edge path terminating at τ(a) that is fixed
edgewise by stab(a) and this transformation can be written as 〈a, bk · · · b2b1〉. Any
product of Nielsen transformations taking Γ to another graph is called a Nielsen
product applicable to Γ. If Γ and Γ′ are reduced G-graphs realizing G and there is
a product of Nielsen transformations taking one to another, up to a G-equivariant
isomorphism of graphs, then Γ and Γ′ are called Nielsen equivalent. By Krstić [4,
Theorem 2] all reduced G-graphs realizing G are Nielsen equivalent.

Krstić’s main results [4, Propositions 4 and 4’] show that for any element f in
the centralizer of G there is a product of Nielsen transformations N taking Γ to a
Nielsen equivalent graph N(Γ), and a (basepoint preserving) G-equivariant graph
isomorphism φ : N(Γ) → Γ so that φ∗N∗ = f . In other words, every element of
the centralizer of G is induced by a Nielsen product applicable to Γ followed by a
(basepoint preserving) G-equivariant graph isomorphism.

If a reduced (pointed) G-graph Γ realizing G has no Nielsen transformations
applicable to it, the centralizer of G is generated solely by (basepoint preserving)
G-equivariant graph automorphisms of Γ. Since Γ is finite, there are only finitely
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many such automorphisms, and therefore C(G) is finite. The following example
illustrates this situation.
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Figure 3

Example 2.2. Let G ∼= Z15 < Aut(F6) and p(G) < Out(F6). Note that
G ∼= p(G) and denote the generator of each of these groups by g. Let g act on the
graph Γ in Figure 3 by cyclic permutation of the bottom edges (the orbit of a), and
by cyclic permutation of the top edges (the orbit of b). Then each of G and p(G) is
realized by its action on Γ. The stabilizer of a (and therefore of all of O(a, ā)) is 〈g5〉;
the stabilizer of b is 〈g3〉. Since stab(a) �⊂ stab(b) and stab(b) �⊂ stab(a), there are no
Nielsen compatible edges in Γ. Thus C(p(G)) < Out(F6) is isomorphic to the group
of G-equivariant graph automorphisms of Γ and C(G) < Aut(F6) is isomorphic to
the group of basepoint preserving G-equivariant graph automorphisms of Γ. Thus
C(p(G)) and C(G) are both finite.

What if we do have Nielsen transformations? What if we have a whole “loop”
of them? Suppose that β = bk · · · b1 is a non-trivial edge loop outside of O(a, ā)
based at τ(a) and stabilized edgewise by stab(a). Then N = 〈a, β〉 is a Nielsen
product applicable to Γ, N(Γ) = Γ, and N induces a G-equivariant automorphism
of the path groupoid and of the fundamental group of Γ. More precisely, N takes
the path a in Γ to the path a β, and N2 takes a to a β2. Since β is a non-trivial edge
loop the edge length of a N j(a) grows as j grows. Thus N induces an infinite order
automorphism of the path groupoid of Γ. How does N behave on the fundamental
group of Γ? It is possible that both N∗, the induced automorphism on π1(Γ, ∗),
and p(N∗), its projection into Out(Fn), have infinite order (c.f. Example 2.3); it
is possible that N∗ is the identity and therefore so is p(N∗) (c.f. Example 2.4);
and it is possible that N∗ is an inner automorphism of Fn (c.f. Example 2.5). The
following examples illustrate these cases.
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Example 2.3. Let G ∼= Z4 < Aut(F4). Note that G ∼= p(G) and denote the
generator of each of these groups by g. Let g act on the graph Γ in Figure 4 by
cyclic permutation of the bottom edges (the orbit of a) and by cyclic permutation of
the top edges (the orbit of b). The stabilizer of a (and therefore of all of O(a, ā)) is
{1}; the stabilizer of b is 〈g2〉. Let β be the edge loop b̄ g(b). Since stab(a) fixes each
edge of β and β is an edge loop, N = 〈a, β〉 is a product of Nielsen transformations
taking Γ to itself. Noting that g(β) = β, we get that N takes the edge loop ag(ā)
to the edge loop a β2 g(ā), and more generally that Nk(ag(ā)) = a β2k g(ā). Since
clearly the edge length of this loops grows as k does, N∗ has infinite order. Further,
since a �= g(a), Nk(a g(ā)) is cyclically reduced so there is no k so that Nk is an
inner automorphisms and therefore p(N∗) also has infinite order. Thus, in this case,
both C(G) and C(p(G)) are infinite.
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Example 2.4. Let G ∼= Z6 < Aut(F6). Note that G ∼= p(G) and denote the
generator of each of these groups by g. Let g act on the graph Γ in Figure 5 by

g :
{

ai �→ ai+1 (mod 6)

bi �→ bi+1 (mod 3)
. For ease of notation, denote a0 by a and b0 by b.

The stabilizer of a (and therefore of all of O(a, ā)) is {1}; the stabilizer of b is 〈g3〉.
Let β denote the edge loop g(b) g2(b) b. Since stab(a) fixes each edge of β and β is
a loop, N = 〈a, β〉 is a Nielsen product taking Γ to itself. Consider the effect of N
on the edge loops a g3(ā) and a g(b) g4(ā).

N(a g3(ā)) = a β g3(β̄) g3(ā) = a β β̄ g3(ā) = a g3(ā);

N(a g(b) g4(ā)) = a β g(b) g4(β̄) g4(ā)
= a g(b) g2(b) b g(b) g(b̄) b̄ g2(b̄) g4(ā) = a g(b) g4(ā).

Since all edge loops in π1(Γ, ∗) are concatenations of loops of the above types,
we could show that the effect of N on every edge loop of Γ based at ∗ is trivial.
Thus each of N∗ and p(N∗) is the identity. Here both C(G) and C(p(G)) are finite.

Example 2.5. Let G ∼= Z2 < Aut(F2). Note that G ∼= p(G) and denote the
generator of each of these groups by g. Let g act on the graph Γ in Figure 6 so
that g fixes the edge b and transposes the two edges between τ(a) and ι(a) (the
orbit of a). Since the stabilizer of a fixes the edge loop b the Nielsen transformation
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N = 〈a, b〉 takes Γ to itself. N induces an inner automorphism of π1(Γ, ∗) which
is conjugation by the element of F2 associated with the edge loop b. For example,
the edge loop ā g(a) becomes b̄ ā g(a) b under N . Thus N induces an infinite order
element of Aut(Fn) but induces the identity element in Out(Fn). In this situation,
C(G) is infinite while C(p(G)) is finite.

The following section gives results which differentiate these cases.

3. Groups with Normal Edge Stabilizers

Let G be a finite subgroup of Out(Fn) (or Aut(Fn)) and let Γ be a (pointed)
reduced G-graph realizing G.

Definition 3.1. An oriented edge a of Γ is called Nielsen compatible if there
is a Nielsen transformation 〈a, b〉 applicable to Γ.

In Example 2.4 we showed a graph which had a Nielsen compatible edge and the
Nielsen products taking Γ back to itself that arose from moving this edge had trivial
effect on π1(Γ). In this situation we wish to call the edge, and all associated Nielsen
transformations, “π1-trivial.” This term is defined below and in Proposition 3.6 we
prove that this is the definition we want.

Definition 3.2. An oriented edge a of Γ is said to be π1-trivial if
1. it is Nielsen compatible,
2. O(τ(a)) is a proper subset of V (Γ) (and the basepoint is outside O(τ(a))),

and
3. the connected component of Γ \ O(a, ā) that contains τ(a) is a simple edge

loop that can be written as g(b) · · · gr(b) b for some oriented edge b, some
element g ∈ G, and some integer r.

Example 3.3. Let 〈g〉 = Z6 and consider the Z6-subgraph in Figure 7. Since
stab(a) = {1} ⊂ 〈g3〉 = stab(b), a is a Nielsen compatible edge. Since Γ \ O(a, ā)
is the simple edge loop g(b) g2(b) b, and there are vertices outside of O(τ(a)), a is a
π1-trivial edge.

Whenever 〈a, b〉 is a Nielsen transformation applicable to Γ such that a is a π1-
trivial edge, then we call 〈a, b〉 a π1-trivial Nielsen transformation and the ordered
pair (a, b) a π1-trivial pair. Note that, as illustrated in Figure 7, in this situation
O(b, b̄) is the only edge orbit incident with O(a, ā) at the vertices in O(τ(a)).

Krstić and Vogtmann obtained results on the finiteness of C(G) for a particular
type of finite subgroups of Out(Fn). Theorem 3.4 extends this result to the same
type of subgroups of Aut(Fn). This “type” of subgroup is one which can be realized
by a (pointed) reduced G-graph Γ in which each edge stabilizer is normal in its
associated vertex stabilizers. In this case G will be said to be realized normally by
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Γ. If b is an edge whose edge stabilizer is normal in its associated vertex stabilizers,
then there is an edge loop β contained in O(b, b̄) that is fixed by stab(b). As a
consequence of this, when G is realized normally by Γ and 〈a, b〉 is any Nielsen
transformation applicable to Γ, then there is a Nielsen product 〈a, β〉, with β as
above, taking Γ to itself. This fact is crucial in 2) =⇒ 3) of Theorem 3.4 below.

Theorem 3.4. Let G be a finite subgroup of Out(Fn) (or Aut(Fn)) that is
realized normally by the (pointed) reduced G-graph Γ. Then the following are equiv-
alent.

1. C(G) is isomorphic to the group of (basepoint preserving) G-equivariant
graph automorphisms of Γ;

2. C(G) is finite;
3. Every Nielsen compatible edge of Γ is π1-trivial.

Proof. 1. =⇒ 2.

The group of (basepoint preserving) G-equivariant automorphisms of Γ is a
subgroup of Aut(Γ), which is finite since Γ is finite.

2. =⇒ 3.

The following proposition is the heart of this part of the proof. Note that this
proposition does not require that G be realized normally; this proposition will be
used again later to prove criteria for general finite subgroups of Out(Fn) (or Aut(Fn))
to have a finite centralizer.

Proposition 3.5. Let G < Out(Fn) (or Aut(Fn)) be finite with a finite cen-
tralizer; let Γ be a (pointed) reduced G-graph realizing G. If Γ has a Nielsen com-
patible edge a for which there exists an edge loop β at τ(a) that is outside of O(a, ā)
and is fixed by stab(a), then a is π1-trivial.

Proof. Let a and β be as described in the statement of the proposition. Then
N = 〈a, β〉 is a Nielsen transformation applicable to Γ. Without loss of generality,
we may assume β is a simple edge loop (or go back and choose one that is). Write
β = b1 · · · br b as a reduced edge path. Let C be the connected component of
Γ \ O(a, ā) that contains b, and therefore τ(a).
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Claim: O(τ(a)) is a proper subset of V (Γ).

If O(τ(a)) = V (Γ) then τ(a) = ι(g(a)) for some g ∈ G. Then there is an
integer s so that σ = a g(a) · · · gs(a) is an edge loop. Further the basepoint is in
O(τ(a)) and without loss of generality we may assume that the basepoint is ι(a).
Then σ is an edge loop at the basepoint of Γ. Applying powers of N to σ yields:
Nk(σ) = a βkg(a)g(βk) · · · gs(a)gs(βk). Clearly this edge loop grows in edge length
as k grows, so N∗ has infinite order. Further, since β is outside O(a, ā), each
Nk(σ) = a βkg(a)g(βk) · · · gs(a)gs(βk) is cyclically reduced. Thus p(N∗) also has
infinite order.

Thus if O(τ(a)) is not a proper subset of V (Γ), C(G) is infinite. So we may
assume O(τ(a)) is properly contained in V (Γ).

Claim: If G < Aut(Fn), the basepoint is not in C.

Since C is connected and τ(a) is a vertex of C, if the basepoint is also there
then there exists an edge path ψ within C from the basepoint to τ(a). Since as
a subgraph, O(a, ā) has non-trivial fundamental group, we may choose φ to be
an edge path in O(a, ā) from ι(a) to τ(a) that is not a itself. Then σ = ψ ā φ ψ̄
is a non-trivial, freely reduced edge loop at the basepoint. Consider the effect
of Nk on σ. Since ψ is in C, it contains no edges of O(a, ā) and therefore Nk

leaves it unchanged, Nk(ā) = β̄k ā, and Nk(φ) we’ll just write as Nk(φ). Then
Nk(σ) = ψ β̄k ā Nk(φ) ψ̄. The edge length of ψβ̄k, the edge path that precedes the
first occurrence of ā in Nk(σ), increases as k increases. Thus there is no integer k
so that Nk(σ) = σ and therefore N∗ has infinite order.

Thus, since C(G) is finite, we may assume that the basepoint is not in C. A
similar argument shows that the basepoint is not in any image of C, and so we may
conclude that the basepoint is outside O(τ(a)).

Then for every edge h(a) ∈ O(a) there is a (possibly trivial) edge path outside
O(a, ā) ∪ O(C) from the base point to ι(h(a)). Let ψh(a) denote such a path.

Claim: C is a simple edge loop.

We may consider the simple edge loop β as a subgraph of C. If β is a proper
subgraph of C there is an oriented edge and its inverse {e, ē} in C \ β. Since Γ is
a reduced G-graph, O(e, ē) has non-trivial fundamental group, so we may choose
an edge loop at ι(e) that contains e. Call this loop γ′. Use edges of β as necessary
to complete γ′ to an edge loop based at τ(a) and call it γ. Note that since neither
e nor ē is an edge of β, γ and β are independent elements of π1(C, τ(a)). In
particular, βkγβ̄k and γ always represent distinct edge loops. Consider the effect
of powers of N on the edge loop σ1 = ψa a γ ā ψ̄a: for every positive integer k,
Nk(σ1) = ψa a βk γ β̄k ā ψ̄a which is unequal to σ1 by the above. Thus N∗ has
infinite order.

Note that if w ∈ Fn so that σ1 = w σ1 w̄, then w = ψa a βk ā ψ̄a. Since Γ
is a reduced G-graph and there is no edge of O(a) whose initial point is τ(a),
there must be an edge g(a) ∈ O(a), distinct from a, that shares the terminal point
of a. Then σ2 = ψa a g(ā) ψ̄g(a) is an edge loop at the basepoint and Nk(σ2) =
ψa a βk g(β̄k) g(ā) ψ̄g(a). Note that Nk(σ2) �= w σ2 w−1, in particular because on
the right hand side g(ā) cannot cancel with a, so g(ā) ψ̄g(a) cannot cancel with
ψa a. Thus there is no integer k for which Nk

∗ is an inner automorphism and so
p(N∗) also has infinite order.
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Thus if C is not a simple edge loop, C(G) is infinite. So we may assume that β
and C are the same as subgraphs of Γ and therefore that C is a simple edge loop.

Claim: β = g(b) · · · gr(b) b for some oriented edge b, some element g ∈ G.

We have that β = b1 b2 . . . br b as a freely reduced edge loop based at τ(a).
Since Γ is a reduced G-graph, b is contained in a loop in its orbit. This loop is a
subgraph of β and therefore must be β itself. Then each edge of β is in the orbit
of b and in particular, there exists g ∈ G so that either b1 = g(b) or b1 = g(b̄).

Suppose that b1 = g(b̄). Then g fixes τ(b) and acts as a reflection of β over
the vertex τ(b). That is, g(β) = β̄. Since stab(a) ⊆ stab(b) and g does not fix
b, g does not fix a. Thus g(a) is an edge distinct from a that also terminates
at τ(b). Let σ = ψa a g(ā) ψ̄g(a), an edge loop at the basepoint. Then Nk(σ) =
ψa a βk g(β̄)k g(ā) ψ̄g(a) = ψa a β2k g(ā) ψ̄g(a). We can see that the edge length of
Nk(σ) increases as k increases, and thus that N∗ has infinite order. Since g(a) �= a
there is no w ∈ Fn so that w ψa a g(ā) ψ̄g(a) w̄ = ψa a β2k g(ā) ψ̄g(a), so p(N∗) also
has infinite order.

Since C(G) is finite we may assume that b1 �= g(b̄) and therefore that b1 = g(b).
Then b g(b) is an edge path and so is gi(b) gi+1(b) for every integer i. Since Γ is
finite, this means that there is an integer r so that b g(b) g2(b) · · · gr(b) is a simple
edge loop at ι(b). Rewriting this as an edge loop at τ(b), and recalling that β is the
connected component of Γ \O(a, ā) containing τ(b), we can conclude that β can be
written as g(b) g2(b) · · · gr(b) b.

Thus a is π1-trivial.

Since G is realized normally by Γ, every Nielsen compatible edge of Γ meets
the hypotheses of Proposition 3.5. Thus if C(G) is finite, every Nielsen compatible
edge of Γ is π1-trivial.

Before we get to the last portion of this proof, we need to learn more about the
subgraph O(a, ā)∪O(b, b̄) when the pair (a, b) is π1-trivial. The facts gathered here
do not require that the edge stabilizers of G be normal in their vertex stabilizers
and will be used throughout the rest of the paper.

• Since C is a connected component of Γ \ O(a, ā), the orbit of C is the union
of disjoint copies of C. Since each element of G must take C to an isomorphic copy
of itself, each g ∈ G either takes C to itself (an automorphism of C) or takes C
completely off itself.

• If we consider C to be an (r + 1)-gon, it’s automorphism group is Dr+1 the
dihedral group of order 2(r +1). It is generated by a rotation of order r +1 (which
we can think of as g here), and a reflection. If there is an element h ∈ G which
reflects C over some vertex τ(gi(b)) then h(gi(b)) = gi+1(b̄) and therefore g−i−1hgi

sends b to b̄. Since G acts on Γ without inversions, this cannot happen. Thus there
is no element of G that acts as a reflection of C. Then every automorphism of C
in G is equivalent to a power of g in the sense that if h ∈ G and h(C) = C then
h|C = gj |C for some integer j.

• If an element h ∈ G fixes a vertex of C then by the above h|C = gj |C . But
the only power of g that fixes a vertex of C is g0 = 1. Thus if any element of G
fixes a vertex of C, it fixes C itself. This also tells us that within each image of C
all edge stabilizers and vertex stabilizers are the same.

• If h, k ∈ G so that h(a) and k(a) have the same terminal point, then k−1h
fixes τ(a) and therefore C. Thus h|C = k|C . In particular, h(b) = k(b).
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• Let f ∈ G be arbitrary. Since C can be written as g(b) · · · gr(b) b, f(C) can
be written as fg(b) · · · fgr(b) f(b). Thus fgf−1 rotates the cycle f(C).

Now we may complete the proof of Theorem 3.4.

3. =⇒ 1.

Suppose that all Nielsen compatible edges of Γ are π1-trivial. Since Γ is a re-
duced (pointed) G-graph we have an injective map from the group of (basepoint
preserving) G-equivariant graph automorphisms of Γ to C(G). So to show that
C(G) is isomorphic to this group, it is enough to show that for every f ∈ C(G)
there exists a (basepoint preserving) G-equivariant graph automorphism ϕ so that
f = p(ϕ∗) on π1(Γ) (or f = ϕ∗ on π1(Γ, ∗)). Recall that by Krstić [4, Proposi-
tions 4 and 4’], if f ∈ C(G) then f = p(φ∗N∗) (or φ∗N∗) where N is a Nielsen
product applicable to Γ and φ is an isomorphism of (pointed) G-graphs. Thus it
is enough to show that for every Nielsen product N applicable to Γ there exists a
(basepoint preserving) G-equivariant graph isomorphism, ϕ : Γ → N(Γ), so that N
and ϕ induce the same isomorphism of fundamental groups. The following propo-
sition proves this without requiring that all edge stabilizers of G be normal in their
vertex stabilizers, or that all Nielsen compatible edges of Γ be π1-trivial. This
proposition will be used again later to obtain results for general finite subgroups of
Out(Fn) (or Aut(Fn)).

Proposition 3.6. Let G be a finite subgroup of Out(Fn) (or Aut(Fn)) and Γ
a (pointed) reduced G-graph realizing G.

1. Let a be an oriented edge that is π1-trivial and N = 〈a, b〉 a Nielsen trans-
formation applicable to Γ. Then the (basepoint preserving) isomorphism of
G-graphs given by

ϕ :
{

h(b) �→ hg−1(b) ∀h ∈ G
c �→ c ∀c �∈ O(b, b̄)

induces the same isomorphism of fundamental groups as N does.
2. If N is a product of π1-trivial Nielsen transformations so that N(Γ) = Γ,

then N induces the trivial outer automorphism (automorphism) on the fun-
damental group.

Proof. Let a be an oriented edge that is π1-trivial and N = 〈a, b〉 a Nielsen
transformation applicable to Γ. Since a is π1-trivial either the basepoint is outside
O(τ(a)) (automorphism case) or there is some vertex outside of O(τ(a)) that we
may choose as a basepoint (outer automorphism case). Further, there is an element
g ∈ G and an integer r so that we may write the connected component of O(b, b̄)
that contains b as g(b) · · · gr(b) b.

Let h1(a) h2(b) h3(ā) be an edge path in O(a, ā) ∪ O(b, b̄). Recall that ψh1(a)

and ψh3(a) are edge paths outside of O(a, ā)∪O(b, b̄) from the basepoint to ι(h1(a))
and ι(h3(a)) respectively. Then σ = ψh1(a) h1(a) h2(b)h3(ā) ψ̄h3(a) is an edge loop
at the basepoint. Note that τ(h1(a)) = ι(h2(b)) since σ is an edge path. Further,
ι(h2(b)) = τ(h2g

−1(b)) and τ(h2g
−1(b)) = τ(h2g

−1(a)) so we can conclude that
h1(b) = h2g

−1(b). In an entirely similar manner we can show that h3(b) = h2(b).
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Now we can compute:

N(ψh1(a) h1(a)h2(b)h3(ā) ψ̄h3(a)) =

ψh1(a) h1(a) h1(b)h2(b)h3(b̄) h3(ā) ψ̄h3(a) =

ψh1(a) h1(a) h2g
−1(b) h3(ā) ψ̄h3(a)

Thus the effect of N on a loop of the form σ can be mimicked by relabeling
the edge h2(b) as h2g

−1(b). Since N induces a homomorphism, its effect on the
inverse form of σ, ψh3(a) h3(a) h2(b̄) h1(ā) ψ̄h1(a) can be mimicked by relabeling
the edge h2(b̄) as h2g

−1(b̄). The reader can verify that all loops in π1(Γ, ∗) can
be written as concatenations of loops of the form σ and σ̄ so the effect of N∗ on
π1(Γ, ∗) can be duplicated by relabeling each edge h(b±) as hg−1(b±). Further, it

is easy to check that the map ϕ :
{

h(b) �→ hg−1(b) ∀h ∈ G
c �→ c ∀c �∈ O(b, b̄) represents

a (basepoint preserving) G-equivariant graph isomorphism from Γ to N(Γ).
Thus a single π1-trivial Nielsen transformation applicable to Γ can have its

effect on fundamental groups mimicked by an isomorphism of (pointed) G-graphs.
Now let’s look at the case of a π1-trivial Nielsen product.

After performing the π1-trivial Nielsen transformation 〈a, b〉 we may perform
the π1-trivial Nielsen transformation 〈a, g−1(b)〉. Again this induces the same iso-
morphism of fundamental groups as the isomorphism of G-graphs which sends b to
g−1(b) and fixes all edges outside of O(b, b̄). The composition of these two Nielsen
transformations then induces the same isomorphism of fundamental groups as the
isomorphism of G-graphs which sends b to g−2(b). Continuing this line of reason-
ing we see that the product of π1-trivial Nielsen transformations 〈a, g(b) · · · gr(b) b〉
induces the same automorphism of π1(Γ, ∗) as the isomorphism of G-graphs that
takes b to g−(r+1)(b) = b. That is, N = 〈a, g(b) · · · gr(b) b〉 induces the identity
automorphism on π1(Γ, ∗).

Suppose that N = 〈a, β〉 is a product of π1-trivial Nielsen transformations
so that N(Γ) = Γ. Then since the terminal point of a returns to its original
position, β must be an edge path that traverses g(b) · · · gr(b) b, in a positive or
negative direction, some integral number of times. By the above then, N induces
the identity on π1(Γ, ∗).

Now suppose that N is any product of π1-trivial Nielsen transformations so
that N(Γ) = Γ. If 〈a1, b1〉 and 〈a2, b2〉 are π1-trivial Nielsen transformations and
a1 �= a2 as oriented edges, then O(b1, b̄1) ∩ O(b2, b̄2) = ∅ so by Krstić’s relation
(R3) in [5], these two Nielsen transformations commute. That is, when a1 �= a2

and both are π1-trivial, 〈a1, b1〉〈a2, b2〉 = 〈a2, b2〉〈a1, b1〉. So we may rearrange the
factors of N so that all factors moving τ(a1) come first, all factors moving τ(a2)
come afterward, etc. That is, we may write N as 〈ak, βk〉 · · · 〈a1, β1〉 so that ai �= aj

if i �= j. Further, since every vertex is returned to its original position after N is
performed and τ(ai) is only moved by 〈ai, βi〉, each βi must be an edge loop based
at τ(ai).

Note that in the automorphism case, if N is a product of Nielsen transforma-
tions taking Γ to Γ, and N = 〈a1, β1〉 · · · 〈ak, βk〉 as above, then by definition the
basepoint is outside ∪iO(τ(ai)). Then by our previous work, each Ni = 〈ai, βi〉
induces the identity automorphism on π1(Γ, ∗) so the product must also.
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However, in the outer automorphism case though we know that there are ver-
tices outside O(τ(ai)) for each i, it is possible that ∪iO(τ(ai)) = V (Γ) (c.f. Ex-
ample 2.5). In this case, we can compute the outer automorphism induced by each
〈ai, βi〉, separately. For each 〈ai, βi〉 use a basepoint from outside O(τ(ai)), and we
get the identity automorphism on π1(Γ, ∗i) which projects to the identity automor-
phism in Out(Fn), where we no longer need worry about the basepoint. Thus the
product of the projections is trivial, so the projection of the product, p(N∗), is the
identity in Out(Fn).

Using Proposition 3.6, we can conclude that if all the Nielsen compatible edges
of Γ are π1-trivial, the effect of every Nielsen product can be duplicated by an
isomorphism of (pointed) G-graphs. Thus C(G) is isomorphic to the group of
(basepoint preserving) G-equivariant graph automorphisms of Γ.

4. General Finite Subgroups

What can occur when G is not normally realized by Γ, the reduced (pointed)
G-graph realizing it? Let a be an arbitrary oriented edge of Γ and let Fa be the
connected component of Γ \ O(a, ā) that is fixed by stab(a) and contains τ(a).
Whenever we have a path β in Fa that terminates at τ(a) we can move τ(a) along
that path by the Nielsen product 〈a, β〉. By Proposition 3.5, if β happens to be
an edge loop and a is not π1-trivial, 〈a, β〉 induces an infinite order element of
the centralizer. However, if G is not realized normally, Fa may be non-trivial
but may not containing an edge loop. In this case Nielsen transformations may
provide us with elements in the centralizer other than those coming from (basepoint
preserving) G-equivariant graph automorphisms, but they might not produce an
infinite centralizer. In this section we study what happens when Fa contains no
loops, and find criteria for a centralizer of a finite subgroup of Out(Fn) (or Aut(Fn))
to be finite.

Definition 4.1. Let G < Out(Fn) (or Aut(Fn)) be a finite subgroup realized
by the reduced (pointed) G-graph Γ. Let a be an oriented edge of Γ. Let Γa be the
maximal connected subgraph of Γ that contains a and is fixed by stab(a). Let A be
the connected component of Γa ∩O(a, ā) that contains a. Let Fa be the connected
component of Γa \ O(a, ā) that contains τ(a).

Since we will also be working with graphs that are Nielsen equivalent to Γ,
we need notation for the analogous sets in N(Γ). Denote by N(Γa) the maximal
connected subgraph of N(Γ) that contains a and is fixed by stab(a); denote by
N(A) the connected component of N(Γa) ∩ O(a, ā) that contains a; denote by
N(Fa) the connected component of N(Γa) \ O(a, ā) that contains τ(a). One can
show that as edge sets Γa = N(Γa). However, because Nielsen transformations can
change the the way in which edge orbits are incident, we may have Fa �= N(Fa)
and/or A �= N(A).

Definition 4.2. We say that an edge of Γ deadends if for every Nielsen product
N applicable to Γ, N(Fa) is a tree.

Note that if a is not Nielsen compatible in Γ, then Fa consists solely of the
vertex τ(a). Therefore if a is not Nielsen compatible in any graph which is Nielsen
equivalent to Γ, a deadends. Example 4.6 shows an instance of the more general
case in which there are Nielsen compatible edges that deadend.



14 DEBRA L. BOUTIN

Theorem 4.3. Let G < Out(Fn) (or Aut(Fn)) be finite and be realized by the
(pointed) reduced G-graph Γ. Then C(G) is finite if and only if every oriented edge
of Γ is either π1-trivial or deadends.

Proof. ⇐=

Let Γ be a (pointed) reduced G-graph realizing G in which all oriented edges of
Γ are either π1-trivial or deadend. Before we begin this proof, we need to consider
the types of Nielsen transformations that can occur when we start with such a
graph.

• Suppose there is a π1-trivial edge c in Γa \ O(a, ā). Then 〈c, d〉 is a Nielsen
transformation applicable to Γ and d is in Fa ∪ O(a, ā). If d �∈ O(a, ā) then Fa

contains edges from both O(c, c̄) and O(d, d̄) and thus a cannot be π1-trivial. Since
c is π1-trivial, O(d, d̄) is the disjoint union of edge cycles so Fa is not a tree and
a does not deadend. Since this contradicts our hypothesis, if a is not the second
component of a π1-trivial pair then there is no π1-trivial edge in Fa. We may
generalize result to: if neither a nor its inverse is the second component of a π1-
trivial pair in any N(Γ) then there are no π1-trivial edges in Γa \ O(a, ā).

• Let a be a π1-trivial edge of Γ. If either a or ā is the second component of
a Nielsen transformation 〈c, d〉 applicable to Γ, the subgraph A ∪ Fa is contained
in the connected component of Γc \O(c, c̄) that contains τ(c). Since a is π1-trivial,
Fa is the union of disjoint edge loops, and thus c is neither π1-trivial nor deadends.
Since this contradicts our hypotheses, if a is a π1-trivial edge of Γ, neither a nor its
inverse is the second component of a Nielsen transformation applicable to Γ.

• Let a be a π1-trivial edge of Γ. Suppose that there is some Nielsen transfor-
mation N so that a is not π1-trivial in N(Γ). Since every Nielsen transformation
having a as a first component preserves the π1-triviality of a, then either N is a
Nielsen transformation 〈c, a〉 which moves a new orbit into the connected compo-
nent of N(Γ)\O(a, ā) that contains τ(a), or N is a Nielsen transformation 〈g(b), a〉
or 〈g(b̄), a〉 which breaks up the cycle g(b) · · · gr(b) b. But by our above work the
first case cannot occur, and since a is π1-trivial stab(b) �⊆ stab(a) and the second
case cannot occur. Thus if a is π1-trivial in Γ and all edges of Γ are either π1-
trivial or deadend, then a is π1-trivial in every graph that is Nielsen equivalent to
Γ. Further, we may generalize the previous conclusion to: if a is a π1-trivial edge
of Γ, neither a nor its inverse is the second component of a Nielsen transformation
applicable to any N(Γ).

• Let (a, b) be a π1-trivial pair. If a shows up as the first component of of
a Nielsen transformation 〈a, d〉 applicable to some graph N(Γ) and d �∈ O(b, b̄)
then both O(b, b̄)∩N(Fa) and O(d, d̄)∩N(Fa) are non-trivial. Since we’ve shown
that this cannot happen, whenever (a, b) is a π1-trivial pair and 〈a, d〉 is a Nielsen
transformation applicable to some N(Γ), then d ∈ O(b, b̄).

In this first part of the proof we will see that when N is a product of Nielsen
transformations taking Γ back to itself the effect of N is that of a π1-trivial Nielsen
product. That is, as an isomorphism of path groupoids N = T where T is a product
of π1-trivial Nielsen transformations. By Proposition 3.6, this will tell us that N
induces the trivial element. We will then use this result to show that whenever we
have a graph that is Nielsen equivalent to Γ, there are a finite number of elements
of the centralizer that come from Nielsen transformations taking Γ to Γ′. To get
started we need the following definition.
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Definition 4.4. Let a be an oriented edge of Γ. We say that a Nielsen trans-
formation N = 〈c, d〉 is from inside Γa if there is some g ∈ G so that both g(c) and
g(d) are in Γa. Otherwise we say that N is from outside Γa.

First we will show that when N is a Nielsen product taking Γ to itself and a is an
oriented edge of Γ, there are Nielsen products Ta, Tā, I and O where Tā is a product
of π1-trivial Nielsen transformations that move τ(ā) (possibly a trivial product),
Ta is a product of π1-trivial Nielsen transformations that move τ(a) (possibly a
trivial product), I is a product of Nielsen transformations from inside Γa that are
not in Ta or Tā, O is a product of Nielsen transformation from outside Γa, and
N = Tā Ta I O.

Notice that if 〈c, d〉 is from outside Γa then for each g(c) either stab(a) does
not fix g(c) or there is no edge path from τ(a) to τ(g(c)) that is fixed by stab(a).
Since stab(g(c)) ⊆ stab(g(d)) and τ(g(c)) = τ(g(d)) this implies that g(d) is not in
Γa. Thus if 〈c, d〉 is from outside Γa then both c and d are. If g(c) and g(d) are
both in Γa we may as well assume that c and d are. Otherwise we could just relabel
our Nielsen transformation as 〈g(c), g(d)〉.

By working through the notation we could show that Nielsen transformations
〈c, d〉 and 〈e, f〉 commute if and only if c �∈ O(e), c �∈ O(f, f̄) and e �∈ O(d, d̄). This
fact will be used throughout this proof.

Consider two Nielsen transformations: 〈c, d〉 from inside Γa, and 〈e, f〉 from
outside Γa. Since no image of e or f is in Γa but both c and d are in Γa, e, f �∈
O(c, c̄),O(d, d̄). Thus 〈c, d〉 and 〈e, f〉 commute. This shows that we can reorder
the Nielsen transformations that comprise the product N so that all factors that
are from outside Γa are on the right and all factors that are from inside Γa are
on the left. That is we have Nielsen products I and O from inside and outside Γa

respectively, so that N = I O.
Now we wish to rewrite I as Tā Ta I ′, where I ′ is a product of Nielsen transfor-

mations from inside Γa that that are not in Ta or Tā.
Suppose that a is π1-trivial. Consider 〈a, d〉 and 〈e, f〉 where all d, e, f ∈ Γa and

e �∈ O(a). By previous work since all edges here are either π1-trivial or deadend and
since a is π1-trivial, a �∈ O(f, f̄) and e �∈ O(d, d̄). Thus 〈a, d〉 and 〈e, f〉 commute.
The same result holds for 〈ā, d〉 and 〈e, f〉 when ā is π1-trivial and e �∈ O(ā). Thus
π1-trivial Nielsen transformations moving τ(a) commute with everything else in I,
except things like themselves, and π1-trivial Nielsen transformations moving ι(a)
commute with everything else in I, except things like themselves. Thus we can
rewrite I as I = Tā Ta I ′ as desired. Relabeling I ′ as I we have that N = Tā Ta I O.

Our goal is to show that N(a) = TāTa(a).
If N(a) = a we can let Tā and Ta be the identity transformation and we’ll

be done. Thus we can assume that N(a) �= a and in particular that neither a
nor its inverse is ever the second component of a π1-trivial pair (since if it were
neither a nor its inverse would ever show up as the first component of a Nielsen
transformation and we would have N(a) = a).

Notice that by construction, the set of oriented edges whose terminal points can
be moved by Tā, Ta, I and O are disjoint. Thus edges moved by O remain unmoved
under Tā Ta I and thus must be left by O in their final position. By hypothesis,
this final position is their original position. Thus O(Γ) = Γ, Tā Ta I(Γ) = Γ, and
since O never moves the end points of a, O(a) = a. Repeating this reasoning gives
us that I(Γ) = Γ, but we’ll need to prove that I(a) = a.
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This is the heart of the proof. The idea is that since the connected components
of Γa \ O(a, ā) are always trees and there are no loops for τ(a) to move around,
τ(a) must not move at all.

Let I(a) = ck · · · c1 a b1 · · · b� so that ck · · · c1 and b1 · · · b� are reduced edge
paths. Since I induces an automorphism on the edge paths of Γ, I(a) is a path
from i(a) to τ(a). Thus ι(ck) = ι(a) and τ(b�) = τ(a). Since this is an edge path
τ(c1) = ι(a) and τ(a) = ι(b1). Thus ck · · · c1 is an edge loop based at ι(a) and
b1 · · · b� is and edge loop based at τ(a). Further, these edge loops are contained in
Γa.

Case 1) If both a and ā are π1-trivial there are no Nielsen transformations from
inside Γa that are not in Ta or Tā. Thus I is trivial and I(a) = a. Then we may
assume that not both a and ā are π1-trivial.

Case 2) If ā is π1-trivial and a deadends then

• ck · · · c1 is trivial, since there are no Nielsen transformations in I taking
τ(ā) = ι(a) anywhere.

• If b1 · · · b� is not wholly contained in Fa then, by the definition of Fa, b1 · · · b�

must contain an edge of Γa∩O(a, ā). But we’ve seen that since ā is π1-trivial
there is no way to have a Nielsen transformation with an image of a or ā as
its second component. Thus there is no way to get an edge of Γa ∩ O(a, ā)
into b1 · · · b�. Thus b1 · · · b� is a loop contained in Fa which means it is trivial
since Fa is a tree.

The same is true if a is π1-trivial and ā deadends. Thus we may assume:

Case 3) Both a and ā deadend.
If there is no oriented edge b in Fa or Fā so that stab(b) = stab(a), then this

is also true of the images of Fa and Fā and thus there is no Nielsen transformation
from inside Γa that has an image of a or ā as a second component. Thus b1 · · · b�

and ck · · · c1 contain no images of a or ā. Then b1 · · · b� is contained in the connected
component of Γa \ O(a, ā) that contains τ(a). That is b1 · · · b� is contained in the
tree Fa and is therefore a trivial loop. Similarly, ck · · · c1 is a trivial loop and
I(a) = a.

Thus we may assume that there is a b in Fa or Fā so that stab(b) = stab(a).
Note that since b ∈ Γa it is not π1-trivial and thus must deadend. Since Γa =
Γb, for every Nielsen transformation N applicable to Γ N(A) is a subgraph of
N(Γb) \ O(b, b̄) which means N(A) is a tree.

Thus we have that for every Nielsen transformation N applicable to Γ each
image of N(Fa), N(Fā) and N(A) must be a tree. If Γa itself is a tree, then each
of c1 · · · ck and b1 · · · b� is a trivial edge loop and I(a) = a. In the following I will
show that if we assume Γa is not a tree, we can find some Nielsen transformation
N so that there is a non-trivial edge loop in one of N(Fa), N(Fā), and N(A), a
contradiction.

Let σ = σ0 σ1 · · ·σs be an edge loop in Γa. Note that since each image of Fa

and Fā is a tree, there is at least one edge of O(a, ā) in σ. Without loss of generality,
assume that the first edge of the edge loop σ is a. If a is the only edge of O(a, ā)
in σ, let N = 〈a, σ̄s · · · σ̄1〉. Then a is a single edge loop in N(A) (See Figure 8.)

Thus we may assume that a is not the only edge of O(a, ā) in σ. Let j be the
smallest positive integer so that σj ∈ O(a, ā). If σj = g(a) for some g ∈ G, let
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�

�
✻a ❄σ1 · · ·σs

〈a, σ̄s · · · σ̄1〉
✲

�

�
❄σ1 · · ·σs

✍✌
✎�
✻a

Figure 8

N = 〈a, σ̄j−1 · · · σ̄1〉. Then in N(Γ), τ(a) = ι(g(a)), and there is an integer t so
that τ(a) = τ(gt(a)). Thus a g(a) · · · gt(a) is an edge loop of N(A). (See Figure 9.)

�
� �

�✁
✁✁

✕
a

✲σ1 · · ·σj−1

❆
❆❆ g(a)

〈a, σ̄j−1 · · · σ̄1〉
✲

�
� �

�✁
✁✁

✕
a

✲σ1 · · ·σj−1

❆
❆❆ g(a)

Figure 9

Thus we may assume that σj = g(ā). Denote σ1 · · ·σj−1 by α, an edge path
from τ(a) to τ(g(a)) that is contained in Fa. There is some integer t so that
τ(gt(a)) = τ(a) which means that α g(α) · · · gt(α) is an edge loop in Fa. (See
Figure 10.)

�
� �

�✁
✁✁

✕
a

✲α

❆
❆❆
❑
g(a)

✕
g(α)gt(α)

Figure 10

Thus we may assume that α is trivial and σ = a g(ā)σ2 · · ·σs. If a and g(ā) are
the only two edges of O(a, ā) in σ, then denote σ̄s · · · σ̄2 by β, an edge path from i(a)
to i(g(a)) that is contained in Fā. There is some integer t so that ι(gt(a)) = ι(a)
which implies that β̄ · · · gt(β̄) is an edge loop in Fā. (See Figure 11.)

�
� �

❙
❙❙

�
��✇a

✲β

✴g(a)

✕
g(β)gt(β)

Figure 11
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Thus we may assume that β is trivial which implies that σ = a g(ā) an edge
loop in A.

Thus we may assume that there are more than two edges of O(a, ā) in σ. In the
following the ideas are much the same as above and so figures will not be furnished.

Let k be the smallest integer greater than j so that that σk = h(a) or h(ā)
for some h ∈ G. If σk = h(ā), let N = 〈h(a), σ2 · · ·σk〉 and notice that in N(Γ),
τ(h(a)) = i(g(a)). Thus h(a) g(a) gh−1g(a) · · · (gh−1)tg(a) is an edge loop in N(A),
for some integer t.

Thus we may assume that σk = h(a). Denote σ2 · · ·σk−1 by γ. Then there
is some integer t so that τ((gh−1)th(a)) = τ(h(a)) and thus γ̄ · · · (gh−1)t(γ̄) is an
edge loop in Fa.

Thus we may assume that γ is trivial. Then σ = a g(ā) h(a) σ3 · · ·σs. In
particular, g(ā) is an edge path from τ(a) to τ(h(a)). There is an integer t so that
τ(ht(a)) = τ(a), and so g(ā)hg(ā) · · ·htg(ā) is an edge loop in A.

Thus if there is a loop σ in Γa, then there is an edge loop in one of N(Fa), N(Fā

or N(A) for some Nielsen transformation N . Thus Γa is a tree and I(a) = a.
Thus we have that N(a) = Tā Ta I O(a) = Tā Ta(a).
For each positively oriented a in E(Γ) we may write, N(a) = Tā Ta(a), for

appropriate Ta and Tā. When all Nielsen compatible edges are π1-trivial or deadend,
π1-trivial transformations 〈A, B〉 and 〈C, D〉 commute as long as A �= C (A may
even equal C̄ and they’ll still commute). Thus we can write N = Πa∈E(Γ)TāTa.
Then by Proposition 3.6, this product of π1-trivial Nielsen transformations induces
the identity outer automorphism (automorphism) on Fn.

Now that we know how products of Nielsen transformations taking Γ to Γ
behave, let’s look at what we get by composing Nielsen products with isomorphisms
of pointed G-graphs, Γ N−→ Γ′ ϕ−→ Γ.

Let N1, N2 be distinct Nielsen products taking Γ to Γ′ and suppose that Γ′

is isomorphic to Γ as a pointed G-graph. Let ϕ1, ϕ2 be isomorphisms of pointed
G-graphs from Γ′ to Γ. I wish to show that ϕ1N1 and ϕ2N2 are the same up to
a (basepoint preserving) G-equivariant graph automorphism of Γ. The following
lemma will help us get there.

Lemma 4.5. Let ϕ : Γ → Γ be a (basepoint preserving) G-equivariant graph
automorphism, 〈a, b〉 : Γ → Γ′ a Nielsen transformation. Define the (basepoint
preserving) G-equivariant graph automorphism ϕ′ : Γ′ → Γ′ by ϕ′(x) = y in Γ′ ⇐⇒
ϕ(x) = y in Γ. Define 〈ϕ−1(a), ϕ−1(b)〉 : Γ → Γ′ a Nielsen transformation. Then
ϕ′ 〈ϕ−1(a), ϕ−1(b)〉 = 〈a, b〉ϕ.

Proof. The idea here is that ϕ(Γ) simply has its edges labeled differently than
Γ does, but we want to perform the move prescribed by 〈a, b〉 on Γ′, on a graph,
ϕ−1(Γ′) = Γ, whose labels look different. Thus we perform the Nielsen transforma-
tion 〈ϕ−1(a), ϕ−1(b)〉. We could check that this is a valid Nielsen transformation,
and it is because ϕ−1 is a G-equivariant graph automorphism. However, the result
of 〈ϕ−1(a), ϕ−1(b)〉 and 〈a, b〉ϕ differ by the labeling of the edges and vertices. So
let ϕ′ be the automorphism of Γ′ that relabels things in the required way. That is,
ϕ′(x) = y in Γ′ if and only if ϕ(x) = y in Γ.
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Now consider the map N−1
2 ϕ−1

2 ϕ1N1 from Γ to Γ. Notice that ϕ−1
2 ϕ1 is an

automorphism of Γ′. By an extension of the above lemma there is a graph auto-
morphism (ϕ−1

2 ϕ1)′ of Γ and a Nielsen transformation (N−1
2 )′ from Γ′ to Γ so that

N−1
2 ϕ−1

2 ϕ1N1 = (ϕ−1
2 ϕ1)′ (N−1

2 )′ N1.

Then
(
ϕ2N2

)−1

∗

(
ϕ1N1

)
∗

=
(
(ϕ−1

2 ϕ1)′
)
∗

(
(N−1

2 )′ N1

)
∗
.

By our previous work, since (N−1
2 )′N1 is a product of Nielsen transformations

taking Γ precisely to itself,
(
(N−1

2 )′N1

)
∗

= Id. Thus we can conclude that
(
ϕ2 N2

)−1

∗

(
ϕ1 N1

)
∗

=
(
(ϕ−1

2 ϕ1)′
)
∗

and so (ϕ2N2)∗ and (ϕ1N1)∗ differ only by an automorphism induced by a (base-
point preserving) G-equivariant graph automorphism of Γ.

Let m equal the number graph automorphisms of Γ that are (basepoint pre-
serving and) G-equivariant.

By Krstić, every element of C(G) is induced by a Nielsen product followed by
an isomorphism of (pointed) G-graphs. By the above work, whenever Γ′ is a graph
that is Nielsen equivalent to Γ and that is also isomorphic to Γ under a isomorphism
of pointed G-graphs, there are at most m elements of the centralizer coming from a
product of Nielsen transformations Γ → Γ′ followed by an isomorphism of (pointed)
G-graphs, Γ′ → Γ. Thus for every graph that is both Nielsen equivalent to Γ and
isomorphic to Γ as a (pointed) G-graph, we get at most m distinct automorphisms
in the centralizer of G.

Since Γ is finite, there are finitely many graphs that are Nielsen equivalent to Γ
and thus finitely many that are Nielsen equivalent and isomorphic to Γ as (pointed)
G-graphs. Further, since Γ is finite the number of of (basepoint preserving) G-
equivariant automorphisms of Γ, m, is finite.

Thus C(G) is finite.

=⇒
Let a be an edge of Γ that is Nielsen compatible but does not deadend. Then

there is some Nielsen equivalent graph Γ′ in which the component of Γ′
a \ O(a, ā)

that contains τ(a) also contains a non-trivial loop β based at τ(a). Relabel Γ′ as
Γ. By Proposition 3.5 from the proof of Theorem 3.4, since β is a non-trivial edge
loop of Γ \ O(a, ā) based at τ(a) that is fixed edgewise by stab(a), 〈a, β〉 induces
an infinite order element of C(G) unless a π1-trivial.

Thus if C(G) is finite, every edge of Γ either π1-trivial or deadends.

The following is an example of a finite subgroup G, where the graph realizing
G has a Nielsen compatible edge that deadends. Actually, in this case all edges
deadend.

Example 4.6. Let G < Aut(F4) be isomorphic to S3, the symmetric group
on three elements, so that G is realized by the following action on the graph Γ in
Figure 12. Let G act by all permutations on the set of edges on the right (which
will then be the orbit of a), and by all permutations on the set of edges on the right
(the orbit of b). The stabilizer of a is generated by the permutation that transposes
the other two edges of that set. Note that stab(a) is not normal in stab(τ(a)) = G
and that there is exactly one edge in the orbit of b that is also stabilized by stab(a);
assume that this is b itself. Notice that we can slide the orbits of a and b along
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Figure 12

each other to get graphs that are Nielsen equivalent to Γ but in each of them the
subgraph of Γ \ O(a, ā) that is fixed by stab(a) is a single edge. The same is true
of b and every image of either a or b. Thus every edge of Γ deadends.

Notice that N = 〈a, b〉 is a Nielsen transformation applicable to Γ and that
Γ and N(Γ) (Figure 12) are isomorphic as a pointed G-graphs. If we define
ϕ : N(Γ) → G by b �→ b̄, a �→ a and extend G-equivariantly, we get such an
isomorphism. Then N takes the loop a g(a) of Γ to the loop a b g(b̄) g(ā) of N(Γ)
and ϕ takes this to the loop a b̄ g(b) g(ā) in Γ. Thus ϕN does not induce the identity
on π1(Γ, ∗) and since it takes a loop of edge length 2 to a loop of edge length 4,
its effect on loops is not mimicked by any automorphism of Γ. We can check that
(ϕN)∗ has order two. Theorem 4.3 tells us that all elements of C(G) that are not
induced simply by graph automorphisms are induced in the above manner. Thus
we get that C(G) is finite.
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