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Abstract

A set S of vertices is a determining set for a graph G if every auto-
morphism of G is uniquely determined by its action on S. The size of a
smallest determining set for G is called its determining number, Det(G).
A graph G is said to be d-distinguishable if there is a coloring of the ver-
tices with d colors so that only the trivial automorphism preserves the
color classes. The smallest d for which G is d-distinguishable is its dis-
tinguishing number, Dist(G). If Dist(G) = 2, the cost of 2-distinguishing,
ρ(G), is the size of a smallest color class over all 2-distinguishing col-
orings of G. The Mycielskian, µ(G), of a graph G is constructed by
adding a shadow master vertex w, and for each vertex vi of G adding a
shadow vertex ui, with edges so that the neighborhood of ui in µ(G) is
the same as the neighborhood of vi in G with the addition of w. That
is, N(ui) = NG(vi) ∪ {w}. The generalized Mycielskian µ(t)(G) of a
graph G is a Mycielskian graph with t layers of shadow vertices, each
with edges to layers above and below, and the shadow master only ad-
jacent to the top layer of shadow vertices. A graph is twin-free if it has
no pair of vertices with the same set of neighbors. This paper examines
the determining number and, when relevant, the cost of 2-distinguishing
for Mycielskians and generalized Mycielskians of simple graphs with no
isolated vertices. In particular, if G 6= K2 is twin-free with no isolated
vertices, then Det(µ(t)(G)) = Det(G). Further, if Det(G) = k ≥ 2 and
t ≥ k−1, then Dist(µ(t)(G)) = 2, and Det(µ(t)(G)) = ρ(µ(t)(G)) = k. For
G with twins, we develop a framework using quotient graphs with respect
to equivalence classes of twin vertices to give bounds on the determin-
ing number of Mycielskians. Moreover, we identify classes of graphs with
twins for which Det(µ(t)(G)) = (t+1)Det(G).
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1 Introduction

In 1955, Mycielski introduced a construction [19] that takes a finite simple graph,
G, and produces a larger graph, µ(G), called the (traditional) Mycielskian of
G, with a strictly larger chromatic number. To construct µ(G), begin with a
copy of G. For each v ∈ V (G), add a shadow vertex u and edges between u and
the neighbors of v. Finally, add a vertex w whose neighbors are precisely the
shadow vertices. We call w the shadow master. A more formal definition can
be found in Section 2.

Mycielski iteratively applied this construction to G = K2, creating what are
now called the classic Mycielski graphs, Mn. More precisely, M2 = K2 and for all
k ≥ 1, Mk+2 = µ(Mk+1) = µk(K2), where we use µk(G) to indicate iteratively
applying the Mycielsian construction k times starting with G. Thus, M3 =
µ(K2) = C5, and M4 = µ(M3) = µ2(K2) is commonly called the Grötsch graph.
Mycielski proved that these graphs are all triangle-free and satisfy χ(Mn) ≥ n,
where χ(G) is the chromatic number of G.

The generalized Mycielskian of graph G was defined by Stiebitz [21] in 1985
(cited in [22]) and independently by Van Ngoc [23] in 1987 (cited in [24]). It is
denoted µ(t)(G) and will also be formally defined in Section 2. This construction
can be described as having a copy of G at level 0 and t ≥ 1 levels of shadow
vertices whose neighborhoods extend to the levels above and below and that
mirror the neighborhoods of the vertices of G. Finally, µ(t)(G) has a shadow
master w that is adjacent to each shadow vertex at the top level, t. Note that
µ(1)(G) = µ(G). The generalized Mycielski construction is used to construct
graphs with arbitrarily large odd girth and arbitrarily large chromatic number.

In this paper, we will compare the determining number and, when relevant,
the cost of 2-distinguishing for a finite simple graph G to the same parameters
for the Mycielskian graphs arising from G. These parameters are defined and
motivated below.

A coloring of the vertices of a graph G with the colors 1, . . . , d is called a
d-distinguishing coloring if no nontrivial automorphism of G preserves the color
classes. A graph is called d-distinguishable if it has a d-distinguishing coloring.
The distinguishing number of G, denoted Dist(G), is the smallest number of
colors necessary for a distinguishing coloring of G. Albertson and Collins intro-
duced graph distinguishing in [3]. Most of the work in graph distinguishing in
the last few decades has proved that, for a large number of graph families, all
but a finite number of members are 2-distinguishable. Examples of such families
of finite graphs include: hypercubes Qn with n ≥ 4 [6], Cartesian powers Gn for
a connected graph G 6= K2,K3 and n ≥ 2 [1, 15, 17], and Kneser graphs Kn:k

with n ≥ 6, k ≥ 2 [2]. Examples of such families of infinite graphs include: the
denumerable random graph [16], the infinite hypercube [16], and denumerable
vertex-transitive graphs of connectivity 1 [20].

In 2007, Imrich [14] asked whether distinguishing could be refined to provide
more information within the class of 2-distinguishable graphs. In response,
Boutin [10] defined the cost of 2-distinguishing a 2-distinguishable graph G to
be the minimum size of a color class over all 2-distinguishing colorings of G.
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The cost of 2-distinguishing G is denoted ρ(G).
Some of the graph families with known or bounded cost are hypercubes

with dlog2 ne+1 ≤ ρ(Qn) ≤ 2dlog2 ne−1 for n ≥ 5 [10], Kneser graphs with
ρ(K2m−1:2m−1−1) = m+1 [13], and ρ(K2m�H) = m · 2m−1, where � denotes
the Cartesian product and H is a graph with no nontrivial automorphisms [8].

A determining set is a useful tool in finding the distinguishing number and,
when relevant, the cost of 2-distinguishing. A subset S ⊆ V (G) is said to be
a determining set for G if the only automorphism that fixes the elements of S
pointwise is the trivial automorphism. Equivalently, S is a determining set for
G if whenever ϕ and ψ are automorphisms of G with ϕ(x) = ψ(x) for all x ∈ S
then ϕ = ψ [9]. The determining number of a graph G, denoted Det(G), is
the size of a smallest determining set. Intuitively, if we think of automorphisms
of a graph as allowing vertices to move among their relative positions, one can
think of the determining number as the smallest number of pins needed to “pin
down” the graph.

For some graph families, we only have bounds on the determining number.
For instance, for Kneser graphs, log2(n+1) ≤ Det(Kn:k) ≤ n−k with both upper
and lower bounds sharp [9]. However, there are families for which we know
the determining numbers of its members exactly. In particular, for hypercubes,
Det(Qn)=dlog2 ne+1, and for Cartesian powers Det(Kn

3 )=dlog3(2n+1)e+1 [11].
Though distinguishing numbers and determining numbers were introduced

by different people and for different purposes, they have strong connections.
Albertson and Boutin showed in [2] that if G has a determining set S of size
d, then giving each vertex in S a distinct color from 1, . . . , d and every other
vertex color d+1 gives a (d+1)-distinguishing coloring of G. Thus, Dist(G) ≤
Det(G)+1.

Further, in [12], Boutin pointed out that, given a 2-distinguishing coloring of
G, since only the trivial automorphism preserves the color classes setwise, only
the trivial automorphism preserves them pointwise. Consequently, each of the
color classes in a 2-distinguishing coloring is a determining set for the graph,
though not necessarily of minimum size. Thus, if G is 2-distinguishable, then
Det(G) ≤ ρ(G).

In 2018, Alikhani and Soltani [4] studied the distinguishing number of the
traditional Mycielskian of a graph. In particular, they showed that the classic
Mycielski graphs Mk+2 = µk(K2) satisfy Dist(Mn) = 2 for all n ≥ 4. To
generalize to Mycielskians of arbitrary graphs, they considered the role of twin
vertices. Two vertices in a graph are said to be twins if they have the same
open neighborhood, and a graph is said to be twin-free if it does not contain
any twins. In particular, Alikhani and Soltani proved that if G is twin-free with
at least two vertices, then Dist(µ(G)) ≤ Dist(G)+1. Further, they conjectured
that for all but a finite number of connected graphs G with at least 3 vertices,
Dist(µ(G)) ≤ Dist(G). In [7], Boutin, Cockburn, Keough, Loeb, Perry, and
Rombach proved the conjecture with the theorem stated below. Notice that
this theorem does not require graph connectedness.
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Theorem 1.1. [7] Let G 6= K1,K2 be a graph with ` ≥ 0 isolated vertices. If
t` > Dist(G), then Dist(µ(t)(G)) = t`. Otherwise, Dist(µ(t)(G)) ≤ Dist(G).

As seen in Theorem 1.1 and [18, 5], the presence of isolated vertices in G,
and therefore in µ(t)(G), has a significant effect on the structure and behavior
of µ(t)(G). If vi is an isolated vertex in G and t ≥ 2, then in µ(t)(G), vi =
u0i , u

1
i , . . . u

t−1
i are all isolated vertices and, hence, mutually twins. Thus, it is

common to exclude isolated vertices when studying the Mycielski constructions.
In this paper, we will restrict our attention to finite simple graphs that are not
necessarily connected, but that have no isolated vertices. Analogous results for
Mycielskians of graphs with isolated vertices, including K1, will be covered in a
forthcoming paper.

In Section 2, the formal definitions of the traditional and generalized My-
cielskians of a graph, and lemmas regarding the action of their automorphisms
are developed. The twin-free case is considered in Section 3. In particular, we
prove that if a graph G is not K2 and is twin-free with no isolated vertices, then

Det(µ(t)(G)) = Det(G).

We also show that if, in addition to the above hypotheses, G has determining
number k ≥ 2 and t ≥ k − 1, then

Dist(µ(t)(G)) = 2 and ρ(µ(t)(G)) = Det(G).

Finally, in Section 4, we prove results on the determining number for the
Mycielski construction applied to graphs with twins. To accomplish this we
develop a technique utilizing equivalence classes of twins and the resulting quo-
tient graph. This technique allows us to show that the presence of twin vertices
in G causes the determining number of µ(t)(G) to grow proportionally with
the number of vertices. More precisely, if G is a graph with twins and has a
determining set consisting only of twins, then

Det(µ(t)(G)) = (t+ 1) Det(G).

Additionally, if G does not have a determining set consisting only of twins, we
give bounds on the determining number of µ(t)(G).

2 Generalized Mycielskian Graphs

In this section we formally define the traditional and generalized Mycielskians
of a graph, and we present observations about twin vertices in these graphs.
We then discuss how automorphisms of the Mycielskian graph behave when the
underlying graph is twin-free and has no isolated vertices.

Throughout this paper, let NG(v) be the open neighborhood of v in G. For
ease of notation, the open neighborhood of v in the Mycielskian graph will
simply be denoted N(v).
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Suppose G is a finite simple graph with V (G) = {v1, . . . , vn}. The Myciel-
skian of G, denoted µ(G), is a graph with vertex set

V (µ(G)) = {v1, . . . , vn, u1, . . . un, w}.

For each edge vivj ∈ E(G), µ(G) has edges vivj , uivj and viuj ; and additionally,
uiw for all 1 ≤ i ≤ n. That is, N(ui) = NG(vi) ∪ {w} and µ(G) contains G
as an induced subgraph on the vertex set {v1, . . . , vn}. We refer to the vertices
v1, . . . , vn in µ(G) as original vertices and the vertices u1, . . . , un as shadow
vertices. Since w dominates the shadow vertices, we refer to it as the shadow
master. Further, notice that the shadow vertices form an independent set. See
Figure 1 for µ(K2) and µ(K3).

Figure 1: Top: K2, µ(K2) and µ(2)(K2), drawn with vertical levels with the
shadow master on the top. Bottom: K3, µ(K3) and µ(2)(K3), drawn with
concentric levels with the shadow master in the middle.

We now establish an observation about the relationship between automor-
phisms of graphs and automorphisms of their Mycielskians.

Observation 2.1. An automorphism α of G induces an automorphism α̂ on
µ(G) by replicating the action of α on the set of original vertices and also on
the set of shadow vertices, and leaving the shadow master fixed. That is, we can
define the automorphism α̂ of µ(G) by α̂(vi) = α(vi) = vj and α̂(ui) = uj and
α̂(w) = w.

We will see that for most graphs, the only automorphisms of µ(G) are those
induced by automorphisms of G. Making this more precise will involve a dis-
cussion of twin vertices. Recall from the introduction that two vertices x and y
are called twins if they have precisely the same set of neighbors. It is possible
to have a collection of three or more mutually twin vertices. If two vertices of G
are twins, it is straightforward to show that exchanging the twins and fixing the
remaining vertices is an an automorphism of G. Furthermore, also recall from

5



the introduction that a set S is a determining set for G if the only automorphism
that fixes the elements of S pointwise is the trivial automorphism. Thus, every
determining set must contain all but one representative from every collection of
mutually twin vertices.

The following are some structural observations about relationships between
twins in G and twins in µ(G).

Observation 2.2. In µ(G), the shadow master w is adjacent to each shadow
vertex, but not adjacent to any original vertex, so twins in µ(G) are either both
shadow vertices or both original vertices.

Observation 2.3. If vi and vj are twins in G, then they are twins in µ(G) and
so are their shadows ui and uj.

Observation 2.4. If at least one pair of {vi, vj} or {ui, uj} is twins in µ(G),
then both pairs are, as is {vi, vj} within G.

In [4], Alikhani and Soltani considered automorphisms of µ(G) when G is
twin-free, and proved the following.

Lemma 2.5. [4] If G is twin-free and α̂ is an automorphism of µ(G) that fixes
the shadow master, then

(i) α̂ preserves the set of original vertices, {v1, . . . , vn}, and the set of shadow
vertices, {u1, . . . , un};

(ii) α̂ restricted to {v1, . . . , vn} is an automorphism α of G;

(iii) α(vi) = vj if and only if α̂(ui) = uj.

Thus, if G is twin-free, then every automorphism of µ(G) that fixes the
shadow master is induced by an automorphism of G.

The generalized Mycielskian of G, also known as a cone over G, was defined
by Stiebitz [21] in 1985 (cited in [22]) and independently by Van Ngoc [23] in
1987 (cited in [24]), and has multiple levels of shadow vertices. More precisely,
for t ∈ N, the generalized Mycielskian of G, denoted µ(t)(G), has vertex set

{u01, . . . , u0n, u11, . . . , u1n, . . . , ut1, . . . , utn, w}.

For each edge vivj in G, the graph µ(t)(G) has edge vivj = u0iu
0
j , as well

as edges usiu
s+1
j and usju

s+1
i , for 0 ≤ s < t. Finally, µ(t)(G) has edges utiw for

1 ≤ i ≤ n. Intuitively, for 1 ≤ s ≤ t−1, the neighbors of the shadow vertex usi
are the shadows of the neighbors of vi both at level s−1 and at level s+1, while
the neighbors of uti are the shadows of the neighbors of vi at level t−1 and the
shadow master w.

We say that vertex usi is at level s. In addition, we make the identification
u0i = vi. As we did for the traditional Mycielskian, we refer to the vertices at
level 0 as original vertices, to the vertices at level 1 ≤ s ≤ t as shadow vertices,
and to w as the shadow master. Since the shadow master dominates only the

6



shadow vertices at level t, we call level t the top level. Since µ(1)(G) = µ(G), we
omit the superscripts when t = 1. In Figure 1, we illustrate both the traditional
Mycielskian and the generalized Mycielskian with t = 2 for graphs K2 and K3.

As one might suspect, Observations 2.1, 2.2, 2.3, and 2.4, as well as Lemma
2.5, for traditional Mycielskian graphs extend to the generalized Mycielskians
with only minor changes.

Observation 2.6. An automorphism α of G induces an automorphism α̂ on
µ(t)(G) by replicating the action of α on each level of µ(t)(G). That is, we can
define the automorphism α̂ of µ(t)(G) by α̂(u0i ) = α(vi) = vj and α̂(usi ) = usj
for each 1 ≤ s ≤ t and α̂(w) = w.

Observation 2.7. If G has no isolated vertices, twin vertices in µ(t)(G) must
be vertices at the same level. That is, twin vertices have the form usi and usj for
some 0 ≤ s ≤ t.

Observation 2.8. If original vertices vi and vj are twins in G, then usi and usj
are twins in µ(t)(G) for all 0 ≤ s ≤ t.

Observation 2.9. If {usi , usj} are twins in µ(t)(G) for any 0 ≤ s ≤ t, then they
are twins for all such s. In particular, {vi, vj} are twins in G.

Boutin, Cockburn, Keough, Loeb, Perry and Rombach prove in [7] that if
G is not K1,m for m ≥ 0, then all automorphisms of µ(t)(G) fix the shadow
master.

Lemma 2.10. [7] Let G be a graph and let t ∈ N. Let α̂ be an automorphism
of µ(t)(G).

(i) If G = K1,1 = K2, then µ(t)(G) = C2t+3, and α̂(w) can be any vertex.

(ii) If G = K1,m with m 6= 1 and v is the vertex of degree m in G, then
α̂(w) ∈ {w, ut}, where ut is the top level shadow of v.

(iii) If G 6= K1,m for any m ≥ 0, then α̂(w) = w.

In essence, Lemma 2.10 states that the only graphs G that have automor-
phisms of µ(t)(G) that do not fix w are the star graphs K1,m. Figure 2 shows the
graphs K1,3 and µ(t)(K1,3) for t = 1, 2, 3. The vertical reflectional symmetries in
the drawings of µ(t)(K1,3) in Figure 2 correspond to automorphisms that move
the shadow master to the top level shadow of the central vertex in K1,3.

The next lemma is an extension of Lemma 2.5 to generalized Mycielskian
graphs.

Lemma 2.11. Let G 6= K1,m for any m ≥ 0 be a graph on n vertices that has
no isolated vertices and let t ∈ N. If α̂ is an automorphism of µ(t)(G), then

(i) α̂ preserves the level of vertices, that is, α̂({us1 . . . , usn}) ⊆ {us1 . . . , usn} for
all 0 ≤ s ≤ t;

(ii) α̂ restricted to {u01, . . . , u0n} = {v1, . . . , vn} is an automorphism α of G;
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Figure 2: The graphs K1,3 and µ(t)(K1,3) for t = 1, 2, 3. In each, the vertices of
matching color are at the same level.

(iii) if, in addition, G is twin-free, then α(vi) = vj if and only if α̂(usi ) = usj
for all 0 < s ≤ t.

Proof. Since G 6= K1,m for any m ≥ 0, by Lemma 2.10(iii), any automorphism of
µ(t)(G) fixes the shadow master. Furthermore, since G has no isolated vertices,
every vertex x in µ(t)(G) can be uniquely determined by its distance from w.
That is, in µ(t)(G), x = w if and only if the distance of x from w is 0, and x is
at level s if and only if its distance from w is t+1−s. Since distance is preserved
by automorphisms, any automorphism that fixes the shadow master preserves
the level of every other vertex. This proves (i) and (ii).

The proof of Lemma 2.5(iii) that was given by Alikhani and Soltani in [4]
extends to statement (iii) here in the following way. Focusing first on α, if
α(vi) = vj , then α maps the open neighborhood of vi to the open neighborhood
of vj . That is, α(vi) = vj implies α(NG(vi)) = NG(vj). Further, since G is
twin-free, every vertex in G can be uniquely identified by its open neighborhood.
Thus, α(NG(vi)) = NG(vj) implies α(vi) = vj . This gives us the biconditional
statement α(NG(vi)) = NG(vj) if and only if α(vi) = vj .

Since G has no isolated vertices and is twin-free, Observations 2.7 and 2.9 im-
ply that µ(t)(G) is also twin-free, so each vertex of µ(t)(G) can be uniquely iden-
tified by its open neighborhood. Hence, α̂(usi ) = usj if and only if α̂(N(usi )) =
N(usj). By definition,

N(usi ) =


{u0k, u1k | vk ∈ NG(vi)}, if s = 0,

{us−1
k , us+1

k | vk ∈ NG(vi)}, if 0 < s < t,

{ut−1
k | vk ∈ NG(vi)} ∪ {w}, if s = t.

Thus, the open neighborhood of usi in µ(t)(G) is completely determined by the
open neighborhood of u0i = vi in G. This, in turn, implies that α̂(N(usi )) =
N(usj) if and only if α(NG(vi)) = NG(vj). Together with the biconditional
statement from the previous paragraph (iii) follows.
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3 Det(µ(t)(G)) and ρ(µ(t)(G)) for Twin-Free G

We will begin this section by proving that for most twin-free graphs the gen-
eralized Mycielski construction preserves determining number. This is in con-
trast to the proven effect of the Mycielski construction on distinguishing num-
ber. More explicitly, in [7], the current authors proved that for G 6= K1,K2,
Dist(µ(G)) ≤ Dist(G), and that these values may be arbitrarily far apart. For
example, if n ≥ 3 and t ≥ log2(n − 1), then Dist(µ(t)(Kn)) = 2, whereas
Dist(Kn) = n.

Theorem 3.1. Let G be a twin-free graph with no isolated vertices and let
t ∈ N.

(i) If G = K2 then, Det(G) = 1 and Det(µ(t)(G)) = 2.

(ii) If G 6= K2 then any minimum size determining set for G is a minimum
size determining set for µ(t)(G) and

Det(µ(t)(G)) = Det(G).

Proof. For (i), if G = K2, then Det(G) = 1 and, Det(µ(t)(G)) = 2 since
µ(t)(K2) = C2t+3.

For (ii), let S ⊆ V (G) be a determining set for G; we will show S, as a subset
of V (µ(t)(G)), is also a determining set for µ(t)(G). Let α̂ ∈ Aut(µ(t)(G)) such
that α̂(s) = s for all s ∈ S. By Lemma 2.11(ii), the restriction of α̂ to V (G)
is an automorphism α ∈ Aut(G) and, further, by Lemma 2.11(iii), α(vi) = vj
if and only if α̂(usi ) = usj for all 0 ≤ s ≤ t. So, by the assumption that α̂
fixes S pointwise and that S is a determining set for G, α is the identity on
the original vertices. Thus, α̂(vi) = α(vi) = vi for all vi ∈ V (G) and hence,
α̂(usi ) = usi for all i and all s. Thus, S is a determining set for µ(t)(G) and so
Det(µ(t)(G)) ≤ Det(G).

Now, suppose instead that S ⊆ V (µ(t)(G)) is a minimum size determining
set for µ(t)(G). Since G is twin-free, has no isolated vertices, and is not K2, by
Lemma 2.10(iii), every automorphism of µ(t)(G) fixes the shadow master w and
so, by the minimality of S, we can assume w /∈ S. Let

S0 = {vi ∈ V (G) | usi ∈ S for some 0 ≤ s ≤ t}.

Then |S0| ≤ |S|. If β ∈ Aut(G) fixes S0 pointwise, then by Lemma 2.11(iii),

the automorphism β̂ on µ(t)(G) fixes S. Thus, β̂ is the identity on µ(t)(G) and
so restricts to the identity on G. Hence, S0 is a determining set for G and so
Det(G) ≤ Det(µ(t)(G)), yielding equality.

Now, we consider graphs with known determining number. By definition,
Det(G) = 0 if and only if G has only the trivial automorphism, or, equivalently,
if G is asymmetric. In particular, Det(G) = 0 if and only if Dist(G) = 1. If G
has nontrivial automorphisms, then Det(G) = 1 if and only if G has a vertex
x that forms a singleton determining set. In this case, we can color x red and
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all other vertices blue to obtain a 2-distinguishing coloring of G. This coloring
shows that if Det(G) = 1, then Dist(G) = 2 and ρ(G) = 1. Note that these
facts hold for graphs with or without twins.

In fact, if G 6= K2 is a twin-free graph with no isolated vertices and Det(G) =
1, then by Theorem 3.1, Det(µ(t)(G)) = Det(G) = 1. Thus, since Det(µ(t)(G)) =
1, we have Dist(µ(t)(G)) = 2 and ρ(µ(t)(G)) = 1.

Theorem 3.2. Let G be a twin-free graph with no isolated vertices such that
Det(G) = k ≥ 2. Then for t ≥ dlog2(k + 1)e − 1,

Det(µ(t)(G)) = k,Dist(µ(t)(G)) = 2, and ρ(µ(t)(G)) ≤ (k + 1)dlog2(k + 1)e
2

.

Proof. Since Det(K2) = 1 and we are assuming Det(G) ≥ 2 we have G 6= K2.
Thus, by Theorem 3.1, Det(µ(t)(G)) = Det(G) = k. Further, since G is twin-free
and has no isolated vertices, G 6= K1,m for any m ≥ 0.

To show Dist(µ(t)(G)) = 2, first observe that since Det(µ(t)(G)) ≥ 2, µ(t)(G)
has a nontrivial automorphism and so cannot be distinguished with one color.
Thus, Dist(µ(t)(G)) ≥ 2.

We will now show Dist(µ(t)(G)) ≤ 2. Let r = dlog2(k + 1)e and let S =
{v1, v2, . . . , vk} be a determining set for G. For 1 ≤ i ≤ k, let b1b2 . . . br be the
binary representation of i with leading zeros if necessary. For each 1 ≤ i ≤ k and
each 0 ≤ j ≤ r−1, color uji red if bj = 1 and uji blue if bj = 0. We color all other
vertices blue. Assume α̂ ∈ Aut(µ(t)(G)) preserves the red and blue color classes.
By Lemma 2.11(i), since G is not a star graph, α̂ preserves levels. Furthermore,
by Lemma 2.11(iii) we know that α̂(vi) = vj if and only if α̂(usi ) = usj for all

0 < s ≤ t. For every u0i = vi ∈ S, the distinct sequence of colors in the ordered
set {u0i , . . . , uri } guarantees that α̂(vi) = vi for all 1 ≤ i ≤ k. By the fact that S
is a determining set for G, and by Lemma 2.11(ii) and (iii), we now have that
α̂ fixes the vertices at level 0 and therefore fixes every vertex in µ(t)(G). This
shows that Dist(µ(t)(G)) ≤ 2 and completes the proof that Dist(µ(t)(G)) = 2.
Furthermore, this coloring has no more than (k + 1) r

2 = (k + 1)dlog2(k + 1)e/2
red vertices, which gives us the upper bound on ρ(µ(t)(G)).

Note that the bound on t in Theorem 3.2 is sharp. To see this, consider
G = K5 and t = 1. Since Det(K5) = 4, we have t < dlog2(4 + 1)e − 1. By
Lemma 2.10(iii), every automorphism of µ(K5) fixes w, and by Lemma 2.5(ii),
the remaining vertices are mapped as pairs. That is, every pair (vi, ui) can
be mapped to any other pair (vj , uj). Thus, in a 2-distinguishing coloring of
µ(K5), each of the five vertex pairs must have a distinct 2-coloring. However,
since there are precisely four ways in which we can 2-color a pair (vi, ui), we see
that in any 2-coloring of µ(K5) at least two of the vertex pairs must have the
same coloring. Thus, no 2-coloring of µ(K5) can be distinguishing. So we see
that the bound t ≥ dlog2(4 + 1)e − 1 is sharp.

The bound on ρ(µ(t)(G)) is also sharp. To see this, consider G = K4 and
t = 1. Since Det(K4) = 3 and t < dlog2(3 + 1)e − 1, Theorem 3.2 applies.
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To explicitly find ρ(µ(K4)), as in the previous example, note that in any 2-
distinguishing coloring of µ(K4) the ordered pairs of the form (vi, ui) must be
distinguished from each other. This forces us to use all four of the ordered pairs
of two colors. This implies that we must use each of the colors on at least 4
vertices. Therefore, we have ρ(µ(K4)) = ((k + 1)dlog2(k + 1)e)/2 = 4, precisely
our upper bound on ρ(µ(G)).

For many values of t and k, it is possible to to find a coloring that does
better in terms of the cost than the method above. For example, if k + 1 is
not a power of 2, we may choose a set of k integers in the range 1, . . . , 2m that
minimizes the number of 1s in their binary representations. When t > m − 1,
then choosing k integers in the range 1, . . . , 2t+1 gives a similar added flexibility.
The next theorem makes that flexibility precise when t ≥ k − 1.

Theorem 3.3. Let G be a twin-free graph with no isolated vertices such that
Det(G) = k ≥ 2. Then for t ≥ k − 1,

Det(µ(t)(G)) = k,Dist(µ(t)(G)) = 2, and ρ(µ(t)(G)) = k.

Proof. Since t ≥ k − 1 we have t ≥ dlog2(k + 1)e − 1. So by Theorem 3.2,
Det(µ(t)(G)) = k and Dist(µ(t)(G)) = 2.

Let Ŝ = {u01, u12, . . . , uk−1
k }. Color the vertices in Ŝ red and all other vertices

blue. The proof that this is a 2-distinguishing coloring of µ(t)(G) is similar to
the proof in Theorem 3.2.

Now, since |Ŝ| = k, the size of a color class in the 2-distinguishing coloring
above, ρ(µ(t)(G)) ≤ k. If there is a 2-distinguishing coloring of µ(t)(G) with
a color class of size k − 1, then µ(t)(G) would have a determining set of size
k − 1. Since Det(µ(t)(G)) = k, we can now conclude that ρ(µ(t)(G)) = k when
t ≥ k − 1.

As noted earlier, Alikhani and Soltani [4] showed that the classic Mycielski
graphs Mk+2 = µk(K2) satisfy Dist(Mn) = 2 for any n ≥ 4. We can obtain
this result and more by noting that M3 = C5 6= K2 is twin-free, has no isolated
vertices, and satisfies Det(M3) = Det(C5) = 2. We now apply Theorem 3.3
iteratively, with t mercifully equal to 1, to achieve the following.

Corollary 3.4. For all n ≥ 4, Det(Mn) = Dist(Mn) = ρ(Mn) = 2.

4 Det(µ(t)(G)) for G with Twins

We next consider graphs with twin vertices. For vertices x, y of a graph G,
define x ∼ y if x and y are twin vertices. It is easy to verify that ∼ is an
equivalence relation on V (G).

The quotient graph with respect to the relation ∼, denoted G̃, has as its
vertices the set of equivalence classes [x] = {y ∈ V (G) | x ∼ y} with [x]

adjacent to [z] in G̃ if and only if there exist p ∈ [x] and q ∈ [z] such that p and
q are adjacent in G. By definition of ∼, all vertices in an equivalence class have
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Figure 3: A graph G and its quotient graph G̃.

the same neighbors, so in our case [x] is adjacent to [z] in G̃ if and only if x is
adjacent to z in G. Thus,

NG̃([x]) = {[z] | z ∈ NG(x)}.

In particular, if NG̃([x]) = NG̃([y]) then NG(x) = NG(y) and so [x] = [y]. This

implies that G̃ is twin-free. In fact, G is twin-free if and only if G̃ = G. In this
section we focus on graphs that have twins, that is, graphs for which G̃ 6= G.

Since automorphisms preserve neighborhoods and vertices of G are identified
in G̃ exactly when they have identical neighborhoods, every automorphism α
of G induces an automorphism α̃ of G̃ given by α̃([x]) = [α(x)]. However, it

need not be the case that all automorphisms of G̃ arise in this way. The only
nontrivial automorphism of G in Figure 3 is the one interchanging the twin
vertices x and y, which induces the identity on G̃ = P4. However, P4 has a
nontrivial automorphism.

Throughout the rest of this section, we will use G̃ to denote the quotient
graph of a graph G and α̃ to denote an automorphism of a quotient graph. All
sets of vertices with tilde notation will represent sets of vertices in a quotient
graph.

We call a minimum size subset of V (G) containing at least one vertex from
every pair of twin vertices a minimum twin cover. In other words, a minimum
twin cover contains precisely all but one vertex from every equivalence class.
Recall that every determining set must also contain all but one vertex in each
collection of mutual twins. That is, every determining set must contain a mini-
mum twin cover. Thus, if T is a minimum twin cover of G then |T | ≤ Det(G).

Denote the image of T under the quotient map as T̃ . For example, for the graph
G in Figure 3, if T = {y}, then T̃ = {[x]} = {[y]}. Note T̃ is precisely the set
of non-singleton equivalence classes.

Lemma 4.1. Let T be a minimum twin cover of G. Suppose α̃ is an automor-
phism of G̃ that fixes T̃ . Then there exists an automorphism α of G that fixes
T and that induces α̃.

Proof. Since T̃ is precisely the set of non-singleton equivalence classes, and α̃
fixes T̃ , α̃ can only map singleton equivalence classes to other singleton equiva-
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lence classes. Thus, we can define

α(x) =

{
x, if [x] is not a singleton,

y, if [x] is a singleton and α̃([x]) = [y].

It is straightforward to check that α is an automorphism of G that fixes T ,
and that α̃([v]) = [α(v)] for all v ∈ V (G). Thus, α̃ is induced by α.

Note that if α̃ is an automorphism of G̃ that does not fix T̃ , then the auto-
morphism may not extend to G. This is the case for the automorphism α̃ of G̃
given by the vertical symmetry of the drawing in Figure 3. In the case that a
minimum twin cover is a determining set, we get the following corollary.

Corollary 4.2. Let T be a minimum twin cover of G. If T is a determining
set for G, then T̃ is a determining set for G̃.

Proof. Let α̃ be an automorphism of G̃ that fixes each element of T̃ . By
Lemma 4.1, this gives an automorphism α of G that fixes T . Since T is a
determining set for G, we have that α is the identity. Since α̃ is induced by α,
we get that α̃ is the identity.

Note that any superset of a determining set is still determining. Thus, if D̃
is a determining set for G̃, then T̃ ∪ D̃ is a determining set for G̃ containing T̃ .

Theorem 4.3. Let T be a minimum twin cover of G. Among all determining
sets for G̃ containing T̃ , let S̃ be one of minimum size. Let

S = T ∪ {x ∈ V (G) | [x] ∈ S̃ \ T̃}.

Then S is a minimum size determining set for G. In particular, if S̃ = T̃ , then
T is a minimum size determining set for G.

Proof. Let α be an automorphism of G that fixes each vertex in S. We will
show that α must be the trivial automorphism. Let α̃ be the automorphism of
G̃ induced by α. Observe that since α fixes each vertex in S, α̃ fixes each vertex
in S̃. Since S̃ is a determining set for G̃, α̃ must be the identity on G̃. This
implies that, in particular, α̃ fixes all singleton equivalence classes and so α fixes
all vertices that do not have a twin. Since α̃ also fixes non-singleton equivalence
classes, α preserves equivalence classes of twins. So, if a vertex x has a twin,
then either x ∈ T ⊆ S and is fixed by α, or x /∈ T , but all of the twins of x are.
In the latter case, since x can only be mapped to one of its twins, x is fixed as
well. Thus α is the identity and S is a determining set for G.

We will now show S is a minimum size determining set for G. Suppose that
R is a minimum size determining set for G such that |R| < |S|. We will show

|R̃| < |S̃| and R̃ = {[r] | r ∈ R} is a determining set for G̃ containing T̃ , a
contradiction. Since R must contain at least one vertex of every twin pair, we
may assume without loss of generality that T ⊆ R, by swapping a vertex with
one of its twins if necessary. By definition T ⊆ S as well, so |R\T | < |S\T |.

13
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Figure 4: A graph G for which no minimum twin cover is determining.

Because R is of minimum size, no vertex in R\T has a twin in G, and therefore

the vertices in R̃\T̃ are singleton equivalence classes. Thus, |R̃\T̃ | = |R\T |.
The same is true for S\T by definition of S, and so |S\T | = |S̃\T̃ |. All together

we have that |R̃\T̃ | < |S̃\T̃ |. Since R̃ and S̃ each contain T̃ , we now conclude

that |R̃| < |S̃|.
To show R̃ is a determining set for G̃, let α̃ be an automorphism of G̃

that fixes each element of R̃, and hence, each element of T̃ . Let α be the
automorphism corresponding to α̃ given in the proof of Lemma 4.1. Since α̃
fixes R̃ it fixes both T̃ and the singleton equivalence classes in R̃\T̃ . Because

α̃ fixes the singleton equivalence classes in R̃, α fixes the vertices in R that do
not have twins. By Lemma 4.1, α also fixes the vertices of T . Thus α fixes the
vertices in R. Since R is determining, α is the identity on G. So α̃ is the identity
on G̃, meaning R̃ is a determining set and we have reached a contradiction.

Finally, if S̃ = T̃ , then S̃ \ T̃ is empty, so S = T and we conclude that T is
a minimum size determining set for G.

From Theorem 4.3, when the image T̃ of minimum twin cover T of G yields
a determining set for G̃, then DetG = |T |.

Example 4.4. For the graph G in Figure 3, T = {y} is a minimum twin cover.

Since T̃ = {[x]} is a minimum size determining set for G̃, we have S̃ = T̃ , and
S = T = {y} is a minimum size determining set for G. In addition, increasing
the size of [x] by adding additional twins of x gives an infinite family for which
Det(G) = |T |.

Example 4.5. Let G be the graph in Figure 4, with T = {x2, . . . xn}. Then

G̃ = P5 and T̃ consists only of its central vertex. This is not a determining
set, although any other singleton subset of V (G̃) is. In this case, S̃ is any two-

vertex set containing the central vertex; for example, if S̃ = {[x1], [v]}. Then
Theorem 4.3 states that S = {x2, . . . xn, v} is a minimum size determining set

for G. This family of examples has Det(G) = |T |+ Det(G̃).

Theorem 4.3 yields natural bounds on Det(G) in terms of |T | and Det(G̃).
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Corollary 4.6. Let T be a minimum twin cover of G. Then

|T | ≤ Det(G) ≤ |T |+ Det(G̃),

with both bounds sharp.

Proof. Let R̃ be a minimum size determining set for G̃. Then Det(G̃) = |R̃| and

T̃ ∪ R̃ is a determining set for G̃ containing T̃ . By the first part of the proof
of Theorem 4.3, R = T ∪ {x ∈ V (G) | [x] ∈ R̃\T̃} is a determining set for G.

Moreover, R has size at least |T | and at most |T |+|R̃| = |T |+ Det(G̃).
Example 4.4 gives sharpness in the lower bound while Example 4.5 gives

sharpness in the upper bound.

The preceding corollary can be used to establish bounds on the determining
number of µ(t)(G) in the case where G has twins. To do so, we must investigate
how applying the generalized Mycielski construction affects the size of a mini-

mum twin cover as well as the relationship between Det(G̃) and Det(µ̃(t)(G)).

Lemma 4.7. Let G have no isolated vertices and let T be a minimum twin
cover of G. Then the set consisting of vertices in T and all of their shadows,

T (t) = {usi | vi ∈ T, 0 ≤ s ≤ t},

is a minimum twin cover of µ(t)(G) of size (t+1)|T |.

Proof. By Observations 2.7, 2.8, and 2.9, twin vertices in µ(t)(G) must be shad-
ows at level s of twins in G for some 0 ≤ s ≤ t. Thus, if T contains all but one
vertex from any set of mutual twin vertices in G, then the copy of T at level s
contains all but one vertex from each set of mutual twins in µ(t)(G) at level s.
So T (t) is a minimum twin cover.

The following lemma proves that the processes of applying the generalized
Mycielski construction commutes with the process of taking the quotient graph.
Figure 5 gives an example of this for the graphs K1,3 and µ(t)(K1,3) with t = 1, 2,
and for their quotient graphs.

Lemma 4.8. If G has no isolated vertices, then µ(t)(G̃) = µ̃(t)(G).

Proof. By Observations 2.7, 2.8, and 2.9, two vertices are twin in µ(t)(G) if
and only if either they are twin vertices in G or they are shadows at level s
of twin vertices in G. In terms of our equivalence relation, vi ∼ vj in G if
and only if usi ∼ usj for all 0 ≤ s ≤ t in µ(t)(G). This allows us to map the

shadows at level s of [vi] in µ(t)(G̃) to [usi ] in µ̃(t)(G). Additionally, if w is the

shadow master in µ(t)(G), then we map the shadow master of µ(t)(G̃) to [w] in

µ̃(t)(G). It it straightforward to verify that this map preserves both adjacencies

and non-adjacencies. Therefore, µ(t)(G̃) = µ̃(t)(G).
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Figure 5: The graphs K1,3 and µ(t)(K1,3) for t = 1, 2, and their quotient graphs,
with the collapsed twin vertices shown as squares.

If G 6= K`,m, then we can extend Lemma 4.8 to say something about

Det(µ̃(t)(G)). We only address the case G 6= K`,m because it is the only case to
which we refer in subsequent proofs.

Lemma 4.9. If G 6= K`,m and has no isolated vertices, then

Det(G̃) = Det(µ̃(t)(G)).

Proof. Note that by Lemma 4.8, Det(µ̃(t)(G)) = Det(µ(t)(G̃)). The assumption

that G 6= K`,m implies that G̃ 6= K2. Moreover, G̃ is twin-free with no isolated

vertices and so by Theorem 3.1(ii), Det(µ(t)(G̃)) = Det(G̃).

If G has a minimum twin cover that is a determining set, then we can state
the determining number of µ(t)(G) in terms of the determining number of G.
This generalizes Theorem 3.1(ii).

Theorem 4.10. Let G be a graph with no isolated vertices. If G 6= G̃ and G
has a minimum twin cover that is a determining set, then

Det(µ(t)(G)) = (t+ 1) Det(G).

Proof. First we consider the case where G = K`,m for 1 ≤ ` ≤ m. Then G̃ = K2

and G 6= G̃ together imply that m ≥ 2. Let {v1, . . . , v`} and {v`+1, . . . v`+m}
be the partite sets in V (K`,m). Since every minimum twin cover contains all
but one vertex from each partite set, without loss of generality, we can choose
T = V (K`,m) \ {v`, v`+m} as a minimum twin cover of G. It is straightforward
to verify that T is a minimum size determining set for K`,m and, therefore,
|T | = Det(G).
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By Lemma 4.7, T (t) is a minimum twin cover of µ(t)(G) of size (t + 1)|T |.
We will show that T (t) is a minimum size determining set for µ(t)(G). Let α̂ be
an automorphism of µ(t)(G) that fixes the vertices in T (t).

Recall that ` ≥ 1 and m ≥ 2. Therefore, all vertices uji for `+ 1 ≤ i ≤ `+m
and 0 ≤ j ≤ t are in non-singleton equivalence classes. Since twin relationships
are preserved by automorphisms, if a vertex x is fixed by an automorphism,
then its set of twins, [x], is preserved setwise. Further, if an automorphism fixes
all but one of the vertices in a non-singleton equivalence class [x], it must then
fix the vertices of [x] pointwise. This implies that α̂ fixes all vertices of µ(t)(G)
except possibly for those in a singleton class, which are w, and, if ` = 1, the
vertices u0` , . . . , u

t
`. Since for 0 ≤ i ≤ t−1, ui` is only adjacent to shadow vertices

of the other partite set, each of u0` , . . . , u
t−1
` has a unique neighborhood in µ(G)

that is entirely fixed by α̂, and therefore must also be fixed by α̂. The vertex ut`
is adjacent to vertices ut−1

`+1, . . . , u
t−1
`+m, all of which are fixed by α̂. The vertex

w is adjacent to none of these. Therefore, α̂ must also fix ut` and w, and thus it
fixes all vertices of µ(t)(G). Thus the minimum twin cover T (t) is determining,
and so is a minimum size determining set.

Now suppose G 6= K`,m. We will apply Theorem 4.3 to µ(t)(G). Let G 6=
K`,m be a graph with no isolated vertices. By Lemma 4.7, T (t) is a minimum

twin cover of µ(t)(G). We seek a determining set for the quotient graph µ̃(t)(G)

containing T̃ (t) that is of minimum size. By Lemma 4.8, µ̃(t)(G) = µ(t)(G̃).

Moreover, by Observations 2.7, 2.8, and 2.9, T̃ (t) = T̃ (t).
By Corollary 4.2, since T is a determining set for G, we know T̃ is a determin-

ing set for G̃. Since G̃ 6= K2 is twin-free and has no isolated vertices, by Theo-
rem 3.1(ii), any determining set for G̃ is also a determining set for µ(t)(G̃). Thus

T̃ is a determining set for µ(t)(G̃). Since T̃ (t) contains T̃ , it is also a determining

set for µ(t)(G̃). So T̃ (t) is a determining set for µ̃(t)(G) = µ(t)(G̃) containing

T̃ (t) = T̃ (t) of minimum size. Therefore, by Theorem 4.3, T (t) is a minimum
size determining set for µ(t)(G). Thus Det(µ(t)(G)) = (t+ 1) Det(G).

If G does not have a minimum twin cover that is also a determining set,
then we cannot give an exact relationship between Det(G) and Det(µ(t)(G)).
However, for all graphs with twins, we can combine our results to obtain upper
and lower bounds on the determining number of the generalized Mycielskian
of G in terms of the size of a minimum twin cover of G and the determining
number of the quotient graph G̃. Note that the result shows that if G has twins,
then as t gets large, the determining number of µ(t)(G) becomes dominated by
the size of a minimum twin cover for µ(t)(G).

Theorem 4.11. Let T be a minimum twin cover of a graph G with no isolated
vertices and G 6= G̃. Then

(t+1)|T | ≤ Det(µ(t)(G)) ≤ (t+1)|T |+ Det(G̃),

with both bounds sharp.
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Proof. If G = K`,m, then G 6= G̃ tells us that ` ≥ 1 and m ≥ 2. In this case,
|T | = Det(G) and so by Theorem 4.10 we have equality in the lower bound.

Suppose G 6= K`,m. By Lemma 4.7, T (t) is a minimum twin cover of µ(t)(G)
of size (t+1)|T |. By Corollary 4.6,

(t+1)|T | ≤ Det(µ(t)(G)) ≤ (t+1)|T |+ Det(µ̃(t)(G)).

Since G 6= K`,m, by Lemma 4.9, Det(G̃) = Det(µ̃(t)(G)). The upper bound is
achieved in the case where G is the graph in Figure 4.

5 Acknowledgments

The work in this article is a result of a collaboration made possible by the
Institute for Mathematics and its Applications’ Workshop for Women in Graph
Theory and Applications, August 2019.

References

[1] Michael O. Albertson. Distinguishing Cartesian powers of graphs. Electron.
J. Combin., 12:N17, 2005.

[2] Michael O. Albertson and Debra L. Boutin. Using determining sets to
distinguish Kneser graphs. Electron. J. Combin., 14:R20, 2007.

[3] Michael O. Albertson and Karen L. Collins. Symmetry breaking in graphs.
Electron. J. Combin., 3(1):R18, 1996.

[4] Saeid Alikhani and Samaneh Soltani. Symmetry breaking in planar
and maximal outerplanar graphs. Discrete Math. Algorithms Appl.,
11(1):1950008, 2019.

[5] R. Balakrishnan and S. Francis Raj. Connectivity of the Mycielskian of a
graph. Discrete Math., 308(12):2607–2610, 2008.

[6] Bill Bogstad and Lenore J. Cowen. The distinguishing number of the hy-
percube. Discrete Math., 283(1-3):29–35, 2004.

[7] Debra Boutin, Sally Cockburn, Lauren Keough, Sarah Loeb, K. E. Perry,
and Puck Romback. Distinguishing generalized Mycielskian graphs, 2020.
arXiv:2006.03739.

[8] Debra Boutin and Wilfried Imrich. The cost of distinguishing graphs. In
Groups, graphs and random walks, volume 436 of London Math. Soc. Lec-
ture Note Ser., pages 104–119. Cambridge Univ. Press, Cambridge, 2017.

[9] Debra L. Boutin. Identifying graph automorphisms using determining sets.
Electron. J. Combin., 13(1):Research Paper 78 (electronic), 2006.

18



[10] Debra L. Boutin. Small label classes in 2-distinguishing labelings. Ars
Math. Contemp., 1(2):154–164, 2008.

[11] Debra L. Boutin. The determining number of a Cartesian product. J.
Graph Theory, 61(2):77–87, 2009.

[12] Debra L. Boutin. The cost of 2-distinguishing Cartesian powers. Electron.
J. Combin., 20(1):Paper 74, 13, 2013.

[13] Debra L. Boutin. The cost of 2-distinguishing selected Kneser graphs and
hypercubes. J. Combin. Math. Combin. Comput., 85:161–171, 2013.

[14] Wilfried Imrich. Personal communication. 2007.
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