
Structure And Properties Of Locally

Outerplanar Graphs

Debra L. Boutin

Department of Mathematics

Hamilton College, Clinton, NY 13323

dboutin@hamilton.edu

February 11, 2005

Abstract

This paper studies convex geometric graphs in which no path of

length 3 self-intersects. A main result gives a decomposition of such

graphs into induced outerplanar graph drawings. The resulting struc-

ture theorem is then used to compute a sharp, linear upper bound

on the size of the edge set in terms of the number of vertices and the

number and type of graphs in the decomposition. The paper also

shows that though locally outerplanar graphs have hereditary prop-

erties, no graph property that is closed under the taking of minors

can hold for all locally outerplanar graphs. Each of these results is

generalized to convex geometric graphs in which no path of length k

self-intersects.

1 Introduction

A straight-line graph drawn in the plane with vertices in general position
is called a geometric graph. Much of the work in geometric graph theory
is extremal in nature. The canonical question is: “What is the maximum
number of edges that a geometric graph on n vertices can have without
containing a given geometric subgraph?” Some of the forbidden subgraphs
that have been studied are: sets of pairwise disjoint edges, sets of pair-
wise crossing edges, noncrossing cycles, self-intersecting cycles, noncrossing
paths, and self-intersecting paths. A survey of these and other results in
geometric graph theory is provided in [4].

The forbidden subgraphs we focus on here are self-intersecting paths.
A geometric graph with no self-intersecting path of length 3 is called lo-

cally planar and such a graph with vertices in convex position is called
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locally outerplanar. Pach, Pinchasi, Tardos and Tóth [5] proved that lo-
cally planar graphs have at most O(n log n) edges and that this bound is
asymptotically tight. In contrast Boutin in [1] and Brass, Károlyi and Valtr
in [2] independently proved that a locally outerplanar graph has at most
2n− 3 edges. Additionally, Boutin proved that if such a graph has at least
one crossing, it has no more than 2n−6 edges. We will see a generalization
of this bound in Corollary 1.2. In [6], Tardos constructs geometric graphs

with no self-intersecting path of length 2k +1 that have θ(n log(k)
n) edges,

where log(k) is the k-times-iterated log function. Corollary 2.1 will provide
contrast with this result.

A main theorem in this paper addresses the structure of locally outer-
planar graphs. We can easily create these graphs using vertex disjoint out-
erplanar graph drawings (called layering subgraphs) and connecting them
pairwise with additional outerplanar graph drawings (called tethering sub-
graphs) by vertices at distance at least 2. With just a little care in con-
struction, the result is a locally outerplanar graph. Figure 1 illustrates. The
layering subgraphs have edges drawn in solid lines; the tethering subgraphs
have edges drawn in dotted lines.
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Figure 1:

Previous work suggests that a graph is locally outerplanar graphs if and
only if it can be constructed in this manner. This is true but the formal
statement, Theorem 1, requires more detail. This structure theorem is then
used to generalize the edge bound found in [1]; it provides a sharp linear
upper bound on the number of edges in a locally outerplanar graph in terms
of its number of vertices, layering subgraphs, and tethering subgraphs.

The property of being a locally outerplanar graph is a hereditary prop-
erty (that is, a property that is closed under the taking of induced sub-
graphs). In previous work [1], we’ve seen that locally outerplanar graphs
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are 3-colorable and have vertex and edge arboricity 2. These are also hered-
itary properties. In contrast, Theorem 3 shows that every abstract graph
is the minor of some locally outerplanar graph. Thus we can conclude that
no property that is closed under the taking of minors (such as bounded tree
width) can hold for all locally outerplanar graphs.

The structure, edge bound, and hereditary results are generalized to
convex geometric graphs in which no path of length k self-intersects (k-
locally outerplanar). The bound on the number of edges in a k-locally
outerplanar graph contrasts with results of Tardos on (2k+1)-locally planar
graphs as mentioned earlier.

This paper is organized as follows: Section 2 provides notation and
terminology that will be used in the remainder of the paper. Section 3 gives
the statement and proof of the structure theorem for locally outerplanar
graphs and the resulting edge bound. Section 4 generalizes these results to
k-locally outerplanar graphs. Section 5 discusses hereditary properties and
shows how to construct a locally outerplanar graph with a given minor.

2 Background on Local Outerplanarity

A geometric graph is a straight-line graph drawn in the plane in which no
three vertices lie on a single line and no three edges intersect at a single
point. A convex geometric graph is a geometric graph all of whose vertices
lie on the boundary of its convex hull. We will use the notation G to denote
a geometric graph and reserve the notation G for the underlying abstract
graph. A geometric graph with no self-intersecting path of length 3 is called
locally planar. A convex geometric graph with the same property is called
locally outerplanar. The smallest graphs that are locally outerplanar but
not outerplanar are subdivisions of K2,3 and of K4. See Figure 2.
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Figure 2:
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The following notation and observations will be useful in the proof of
the main theorem of of the paper. Some of these are covered in more detail
in [1]. Let G be a convex geometric graph on n vertices. Label the vertices
1, · · · , n moving clockwise around the convex hull. Using cyclic interval no-
tation, let [a, b] denote the vertices of G that lie clockwise between vertices
a and b inclusive. Let (a, b) denote the vertices that lie clockwise strictly
between a and b. Define the cyclic distance from a to b to be the smaller
of the number of vertices in (a, b] or in (b, a], (This would be the length of
a shortest path along the convex hull from a to b if all edges existed on the
convex hull.) A pair of vertices is said to be consecutive on the convex hull
if their cyclic distance is 1.

A path P of length m is given by an ordered set of m + 1 distinct
vertices a0a1 · · ·am where each ajaj+1 is an edge of G. We say a path is
a simple self-intersecting path if its first and last edges cross and these are
the only edges of the path that cross. That is, P = a0 · · · am is a simple
self-intersecting path if a0a1 crosses am−1am and P ′ = a1 · · · am−1 does not
cross itself. Since P ′ does not cross itself or the edges a1a2, am−1am, the
vertices of P ′ are cyclically ordered around the outside of the convex hull.
(That is, if a0 is larger than all other ai then either a1 < · · · < am−1 or
am−1 < · · · < a1.) We will assume that P is written so that P ′ is traversed
clockwise.

Call an ordered pair of vertices 〈u, v〉 a corner pair if there is a simple
self-intersecting path P = aP ′z so that u is the initial point of P ′ and v is
the terminal point of P ′. In particular at least one edge incident to u (e.g.
au) crosses at least one edge incident to v (e.g. vz). Call the set of edges
of G that have initial point u or v and cross edges with initial point v or u

the crossing edges at u and v.

Define Hu,v to be the connected component containing u (and therefore
v) of the subgraph induced by the vertices in [u, v]. (Recall that we are
assuming that P ′ is traversed clockwise and that we know its vertices are
cyclically ordered around the outside of its convex hull; therefore its vertices
are contained in [u, v].) Call a corner pair 〈u, v〉 a minimal corner pair if it
is the only corner pair within Hu,v. Then we can call u and v the corner

vertices of Hu,v and all other vertices of Hu,v the noncorner vertices of
Hu,v . Call a simple self-intersecting path a minimal self-intersecting path

if its corner pair is minimal. Notice that there may be many minimal
self-intersecting paths with the same minimal corner pair.

Example 1. Consider the partial convex geometric graph in Figure 3.
The path P = hbcfga is one of the minimal self-intersecting paths with
minimal corner pair 〈b, g〉. Hb,g is the subgraph induced by {b, c, d, f, g}
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and is drawn in solid lines. The corners vertices of Hb,g are b, g while
the noncorner vertices are c, d, f . The edges ag and bh are the crossing
edges at g and b. Notice that the vertex e is not in Hb,g because it is not
“local” to the paths we are considering here. Further notice that H b,g is
an outerplanar graph drawing - this fact will be proved later.
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Figure 3:

3 Structure

A simple statement of the result we are looking for might be “A convex ge-
ometric graph is locally outerplanar if and only if it can be built by layering
vertex disjoint outerplanar graph drawings and tying these together with
nonadjacent vertices from additional outerplanar graph drawings.” That is
certainly the spirit of the result, but more detail is necessary to ensure that
nothing “silly” is done when tying together the layering subgraphs and that
nothing extraneous is implied. Once new terms are established Corollary
1.1 gives an easier way to state the result.

Theorem 1. A geometric graph G is locally outerplanar if and only if it
contains two sequences of induced convex geometric subgraphs H1, · · · , Hs

and G = G0, G1, · · · , Gs so that Gs is a union of vertex disjoint outerplanar
graph drawings, and for each i ≥ 1

1. H i and Gi provide an edge partition of Gi−1

2. H i is an outerplanar graph drawing

3. V (Gi) ∩ V (H i) = {ui, vi} where

(a) V (H i) ⊆ [ui, vi] as a subset of V (G)
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(b) ui and vi are consecutive vertices on the convex hull of H i and
the shortest path between them has length at least 2

(c) in Gi, [ui, vi] does not contain the terminal vertex of any edge
with initial vertex in the first neighborhood of ui or vi.

Given the situation described above, we will call the subgraphs H1, · · · , Hs

the tethering subgraphs of G and the components of Gs the layering sub-

graphs of G. We will call the vertices V (H i)∩ V (Gi) the attaching vertices

of H i.

Proof. =⇒

Let G be a locally outerplanar graph. Suppose that the theorem is true
for every locally outerplanar graph on fewer vertices than G.

If G is an outerplanar graph drawing we are done.

If G is not an outerplanar drawing then it has crossing edges which
implies the existence of a simple self-intersecting path, a minimal self-
intersecting path, and therefore a minimal corner pair 〈u, v〉. Let H1 =
Hu,v , (the subgraph containing u (and therefore v) of the connected com-
ponent of the graph induced by the vertices of G in [u, v]). Let G1 be the
subgraph that results when we remove the edges and noncorner vertices of
H1 from G.

Since 〈u, v〉 is a minimal corner pair, there is no edge from a noncorner
vertex of H1 to a vertex of (v, u); such an edge would necessarily cross one
of the crossing edges at u and v, providing an additional corner pair in
Hu,v and contradicting the minimality of 〈u, v〉. Also there is no edge from
a noncorner vertex of H1 to a vertex outside of H1 within (u, v); such a
vertex would necessarily belong to H1. Thus there are no edges between
vertices outside of H1 and vertices outside of G1. This means that both
Hi and Gi are induced graphs and that they provide an edge partition for
G. Thus Property 1 is satisfied.

If H1 contains crossing edges then there must be another pair of corner
vertices in H1 - contradicting the minimality of 〈u, v〉. Thus H1 is an
outerplanar graph drawing and Property 2 is satisfied.

The vertices of H1 are a subset of [u, v] by definition so Property 3(a)
is satisfied. Note that as a subset of [u, v] the vertices of H1 are in convex
position. Thus u and v are consecutive on the convex hull of H1. Since there
are crossing edges incident to u and v and G is locally outerplanar, u and
v are not adjacent. Thus Property 3(b) is satisfied. Note that by definition
of H1 any edge from u to [u, v] is in H1 and therefore not in G1. Further,
if an edge from the first neighborhood of u or v (in G1) has terminal point
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in [u, v] it must cross the crossing edges at u and v creating a crossing path
of length 3. This cannot happen and Property 3(c) is satisfied.

By the inductive hypothesis, since G1 is an outerplanar graph on fewer

vertices than G, it can be decomposed yielding sequences H
′

1, · · · , H
′

s−1

and G
′

1, . . . , G
′

s−1 with appropriate properties. Adding H1 and G1 to the
beginning of this sequence renumbering the rest as appropriate gives us the
necessary sequences of induced outerplanar subgraph drawings.

⇐=

As an inductive hypothesis suppose that whenever we have two induced
subgraph sequences of length s− 1 satisfying the hypotheses of Theorem 1,
G0 is a locally outerplanar graph.

Suppose that G is a convex geometric graph with induced subgraph
sequences H1, · · · , Hs and G = G0, G1, · · · , Gs satisfying the hypotheses of
Theorem 1.

Drop H1 and G0 from the given sequences. This leaves us with two
sequences of length s − 1 meeting all appropriate requirements. Thus the
inductive hypothesis gives us that G1 is locally outerplanar. We will see
that this assumption and the hypotheses on H1 and G1 give us that G0 = G

is a locally outerplanar graph.

Suppose not. Then there is a self-intersecting path P of length 3 in G0

that is not in G1. Then at least one of the edges of P is in H1.

Notice that H1 cannot provide the middle edge of P because this would
mean that the incident vertices of this edge are both adjacent and the
attaching vertices of H1 and this would violate Property 3b). Then the
uncrossed edge of P is an edge of G1. Since both G1 and H1 are outerplanar
graph drawings exactly one of the crossing edges of P lives in each of G1

and H1. Suppose that P = abcd so that bc and cd are edges of G1 and that
ab is an edge of H1. In particular, b is a vertex of both G1 and H1. Thus
b is an attaching vertex of H1 and without loss of generality b = u1. Then
since bcd = u1cd is a path, cd is an edge of G1 with one vertex in the first
neighborhood of u1. Since cd crosses an edge of H1 we know that either c

or d falls inside (u1, v1). Since c is adjacent to u1 if it were inside (u1, v1)
it would be in H1. Thus d is in (u1, v1) and G1 has an edge (cd) with
one vertex in the first neighborhood of u1 and another vertex in (u1, v1).
This contradicts property 3(c), and therefore cannot happen. Thus there
is no crossing path of length 3 in G = G1 ∪ H1 and therefore G is locally
outerplanar.
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More generally, suppose that H is an induced outerplanar subgraph

drawing of an arbitrary convex geometric graph G. Let G
′

be the convex
geometric graph we get from G−E(H) by discarding any isolated vertices.

If G
′

and H fulfill properties 3(a), 3(b) and 3(c) of Theorem 1 then we call H

a tethering subgraph of G (even though G may not be locally outerplanar).
This allows us to state our structure result more succinctly.

Corollary 1.1. A convex geometric graph is locally outerplanar if and
only if we can recursively remove the edges and nonattaching vertices of
tethering subgraphs until we are left with vertex disjoint outerplanar graph
drawings.

The following corollary generalizes Theorem 2 of [1] which states that
a locally outerplanar graph on n vertices with at least one crossing has at
most 2n − 6 edges.

Corollary 1.2. A locally outerplanar graph with n vertices and r layering
subgraphs has at most 2n − 3r edges.

Proof. Each layering subgraph provides at most three fewer edges than the
double of its vertices. Thus if the locally outerplanar subgraph consisted
strictly of r layering subgraphs it would have at most 2n − 3r edges. A
tethering subgraph on m vertices adds m−2 new vertices to G and since it
is nonmaximal, it contributes at most 2m−4 new edges. Thus it contributes
at most twice as many new edges as new vertices, thus maintaining the
proportion.

4 Generalization

The above results can be quickly generalized to convex geometric graphs
with no crossing path of length k. Such a graph will be called k-locally

outerplanar.

The only difference in the decomposition of a k-locally outerplanar graph
is that the nonmaximal outerplanar graph drawings Hu,v are more than
one edge away from being maximal. The attaching vertices u and v are
consecutive on the convex hull of Hu,v but the shortest path between these
minimal corner vertices has length k − 1.

Theorem 2. A geometric graph G is k-locally outerplanar if and only
if it contains two sequences of induced subgraphs H1, · · · , Hs and G =
G0, G1, · · · , Gs so that Gs is a union of vertex disjoint outerplanar graph
drawings, and for each i ≥ 1

1. H i and Gi provide an edge partition of Gi−1
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2. H i is an outerplanar graph drawing

3. V (Gi) ∩ V (H i) = {ui, vi} where

(a) V (H i) ⊆ [ui, vi] as a subset of V (G)

(b) ui and vi are consecutive vertices on the convex hull of H i and
the shortest path between them has length at least k − 1

(c) in Gi, [ui, vi] does not contain the terminal vertex of any edge
with initial vertex in the first neighborhood of ui or vi.

This structure theorem also yields a bound on the maximum number of
edges.

Corollary 2.1. A k-locally outerplanar graph with n vertices, r layering
subgraphs, and s tethering subgraphs has at most 2n− 3r− (k− 3)s edges.

Proof. Again each layering subgraph provides at most three fewer edges
than the double of its vertices. Further, since the shortest path from u to v

in Hu,v contains k vertices (including u and v), if we consider the abstract
maximal outerplanar graph on these vertices, it would contain 2k−3 edges,
and only k−1 of them exist in G and therefore Hu,v. Thus there are at least
2k− 3− (k− 1) = k− 2 fewer edges in Hu,v than in a maximal outerplanar
graph on the same vertex set. Thus a tethering subgraph on m vertices
adds m− 2 vertices to G and at most 2m− 3− (k− 2) = 2(m− 2)− (k− 3)
edges. Thus each tethering subgraph provides (k−3) fewer edges than twice
its number of vertices. Thus G has at most 2n − 3r − (k − 3)s edges.

5 Hereditary Properties

In previous work [1] we saw that locally outerplanar graphs are 3-colorable
and have both edge and vertex arboricity 2. However, Corollary 3.2 will
show that locally outerplanar graphs do not have bounded tree width. More
specifically, though the class of locally outerplanar graphs can have heredi-
tary properties (properties that are closed under the taking of subgraphs or
induced subgraphs), this class cannot have properties that are closed under
the taking of minors. Theorem 3 shows this by proving that every graph is
a minor of some locally outerplanar graph.

It is easy to see that any graph H is a minor of some locally planar
graph. Take a geometric graph H whose underlying abstract graph is H .

Subdivide each edge with a vertex of degree 2 yielding H
′

. Any crossing

path of length 3 in H becomes a crossing path of length 4 in H
′

. Then H
′

is locally planar and has H as a minor.
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It is not as immediate to see that every graph is a minor for some locally
outerplanar graph. We not only need to subdivide certain edges of a convex
geometric graph, but we must move the new vertices to the convex hull in
a way that doesn’t create (too many) new crossing 3 paths. This, however,
can always be done and is proved in the following.

Theorem 3. Every abstract graph is a minor for some locally outerplanar

graph.

Proof. Let H be an arbitrary abstract graphs and let H be a convex geo-
metric graph whose underlying abstract graph is H .

If H is locally outerplanar we are done. If not, then find a crossing path
of length 3, say P = abcd in which the cyclic distance between the interior
vertices b and c, is minimal. That is, the uncrossed edge bc of P is as close
to the convex hull as any other uncrossed edge of a crossing 3 path.

The strategy here is to subdivide the edge bc and move the new vertex
to the convex hull. This will eliminate (at least) one crossing path of length
3, but may create (at most) one new one. But any new crossing path of
length 3 will have its uncrossed edge closer to the convex hull than the
original. Since this can only be done a finite number of times before the
number of crossing 3 paths is reduced, we repeat and eventually reduce
the number of crossing paths of length 3. Then we can use an induction
argument to complete the proof. The details follow.

Assume that the vertices of P lie on the convex hull clockwise in the
order a, d, b, c. Subdivide bc by a vertex of degree 2 labeled x then redraw
with x consecutive to b on the convex hull in a clockwise direction. See
Figure 4 for an illustration. Call this new geometric graph H

′

. This changes
abcd, a crossing path of length 3 in H , to abxcd, a crossing path of length

4 in H
′

. We have removed the edge bc, but we’ve created two new edges bx

and xc, and these may have created new edge crossings and therefore may
have created new crossing 3 paths.

Since x is consecutive to b on the convex hull of H
′

, no edge crosses bx.
Thus any newly created crossings must involve the edge xc. A “new” edge

crossing involving xc would be an edge that crosses xc in H
′

but did not
cross bc in H . Such an edge must be of the form by where y ∈ (x, c) and
would yield a crossing 3 path cxby. This crossing 3 path can be eliminated
by subdividing the edge xb. If necessary do so and assume this vertex as

part of H
′

. We also get a new crossing 3 path cxyb if there is an edge yx;
but this cannot occur since x has degree 2. We also get a new crossing
3 path cybx if there is an edge cy. These are the only ways that a new
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Figure 4:

crossing can yield a new crossing 3 path. Notice that cybx has a smaller
distance between the vertices of its uncrossed edge than did abcd in H .

Thus if we have one vertex y in (b, c) that is adjacent to both b and c

we have a new crossing 3 path and the cyclic distance between the vertices
of its uncrossed edge is strictly smaller than the original minimum. There
cannot be two vertices y and z in (b, c) that both are adjacent to both b and
c because would mean a crossing 3 path say zycb with a smaller distance
between the vertices of its uncrossed edge than did abcd in H .

Thus we have eliminated one or more crossing 3 paths of H and in-

troduced at most one crossing 3 path in H
′

but one whose cyclic distance
between vertices of its uncrossed edge is smaller than the minimum in H .
Thus if we repeat this process, after a finite number of steps we must have
created a new convex geometric graph with strictly fewer crossing 3 paths
than the original. At this stage we can appeal to induction to subdivide
the remainder of the crossing 3 paths.

Thus we have found a subdivision and redrawing of H that is locally
outerplanar. This locally outerplanar graph has H as a minor.

Corollary 3.1. No graph property that is closed under taking minors is

held by all locally outerplanar graphs.

Since bounded tree width is a property that is closed under taking mi-
nors [3], we get the following.

Corollary 3.2. Locally outerplanar graphs do not have bounded tree width.

The proof of Theorem 3 can easily be generalized to show that every
abstract graph is a minor for some k-locally outerplanar graph. The corol-
laries also generalize.
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