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Abstract

A finite set W ⊂ Rd is said to realize the group G if
the isometry group of W is isomorphic to G. The isometry
dimension of a group is the minimum dimension of a real-
ization. It is known that the isometry dimension of G is less
than |G| [1]. We show that the isometry dimension of Zn

2

is n. The orbit number of a group is the minimum number
of orbits in a realization. We show that the groups Zn

2 are
the only abelian groups with orbit number 1. We provide
examples that illuminate these parameters.

1 Introduction

A finite set W ⊂ Rd is said to realize the group G if Iso(W ) ∼= G.
Here Iso(W ) is the isometry group of W , the bijections from W to
itself that preserve pairwise distance. We say that the realization
W has dimension d, denoted by dim(W ) = d. It is natural to inves-
tigate the minimum d such that G has a realization of dimension
d. This is called the isometry dimension of G, denoted by δ(G).
Using the Implicit Function Theorem, Albertson and Boutin [1]
showed that δ(G) < |G|. Making an algebraic connection, Patnaik
[2] showed that δ(G) equals the minimum degree of a faithful real
representation of G. This strengthens the previous result since the
regular representation of degree |G| given by Cayley’s Theorem is
faithful, and one of its irreducible constituents is the identity. Sub-
sequently Reichard [3] and Tucker [4] independently discovered this
result.

Given a group G and a realization W , dim(W ) is just one of the
parameters of interest. The size of the realization is |W |. Given
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a group G it is natural to look for realizations of minimum size.
Consequently we define the isometry size ν(G) = min{|W | : W
realizes G}. Similarly the number of orbits in a realization is
denoted by orb(W ), and we define the orbit number of G to be
ρ(G) = min{orb(W ) : W realizes G}.

Examples:

1. The endpoints of the standard basis vectors in Rn give a
realization of Sn. The size and dimension are n and there is one
orbit. Translating so that one of the points is at the origin drops the
dimension to n−1. This translated realization of Sn simultaneously
achieves the isometry dimension [2], the isometry size, and the orbit
number.

2. The vertices of a regular n-gon in R2 give a realization of Dn

of size n, dimension 2, with one orbit. This realization minimizes
the dimension and orbit number for all n > 2, but does not always
minimize the size. Note that D6

∼= D3 ×Z2 and in this latter form
there is a realization with dimension 3, two orbits, and size 5.

3. Any two points in R realize Z2. For n > 2 it is natural to
realize Zn with 2n points in R2. Begin with n points that are the
vertices of a regular n-gon. Between each pair of consecutive points
of the polygon insert an orientation point so that the rotation sym-
metries remain but the reflection symmetries do not [1]. Thus it is
clear that for n > 2, the isometry dimension of Zn is 2. We show
in Section 3 that if n > 2, the orbit number of Zn is 2. However
the isometry size of Zn might be considerably less than 2n. For
example since Z35

∼= Z5 × Z7, we can realize Z35 in R4 with four
orbits using 10 points that are zero in the second two coordinates
and 14 points that are zero in the first two coordinates.

4. For our final example we will look at two realizations of Zn
2 .

The first is a generalized octahedron. Let

W = {wi,j : 1 ≤ i ≤ n, j ∈ {1,−1}}.

Here wi,j denotes the point in Rn that has i ·j in the ith coordinate
and 0 in all other coordinates. So when n = 3,

W = {(1,0, 0), (−1,0, 0), (0, 2, 0), (0,−2, 0), (0, 0, 3), (0, 0,−3)}.

Clearly W has n orbits, dimension n, and size 2n. This realization
achieves both the isometry size and the isometry dimension of Zn

2
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(see Section 2). However there is a dual realization as a generalized
cube which has just one orbit. Let

Ŵ = {
n∑

i=1

wi,σ(i) : σ : Zn → {1,−1}}.

So when n = 3,

Ŵ = {(1, 2, 3), (1, 2,−3), (1,−2,3), . . . , (−1,−2,−3)}.

Looking at the definition we can see that there are as many points in
Ŵ as there are possible functions σ. Therefore, |Ŵ | = 2n. Clearly
the dimension of Ŵ is n. Since Zn

2 acts on Ŵ in the natural way
viz. the ith generator changes the sign of the ith coordinate, Ŵ has
just 1 orbit.

The purpose of this note is

• to introduce the isometry size and orbit number of a group;

• to determine the isometry dimension of Zn
2 ;

• to construct realizations of groups with just one orbit; and

• to characterize the abelian groups with orbit number 1.

2 The Isometry Dimension of Zn
2

Theorem 1. The isometry dimension of Zn
2 is n.

Proof. Let Zn
2 = 〈α1, . . . , αn : α2

i = 1, αiαj = αjαi〉. For the
purpose of this proof, by Zn−1

2 we shall mean the subgroup of Zn
2

generated by α1, . . . , αn−1.

The realizations of Zn
2 in the introduction both have dimension

n. Thus δ(Zn
2 ) ≤ n. We use induction to show that if Zn

2 acts by
isometries on a set of points in Rm then the span of these points
contains an n-cube and therefore must have dimension at least n.

Base Case: If Z2 acts on a set of points in Rn there is some point
z moved by the generator α. Then z and α(z) form a 1-cube.

The induction hypothesis: If X is a set of points whose isome-
try group contains a subgroup isomorphic to Zn−1

2 then within the
span of X is a point y that has a distinct image under each element
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of Zn−1
2 . Further, whenever i 6= j the line segments [y, αi(y)] and

[y, αj(y)] are perpendicular. That is, within the span of X is a set
of vertices of an (n − 1)-dimensional cube where the Zn−1

2 action
is transitive on vertices and the generators α1, . . . , αn−1 act as re-
flections transposing distinct pairs of (n − 2)-dimensional faces of
the cube.

Let X be a set of points whose isometry group is (isomorphic to)
Zn

2 . Since the isometry group of X contains Zn−1
2 , by the induction

hypothesis, the span of X contains a point y as described above.
Denote the Zn−1

2 orbit of y by Y . The proof divides into two cases
depending on whether or not αn(Y ) ∩ Y is empty.

Case 1. αn(Y ) ∩ Y = ∅.

Within αn(Y )∪ Y we wish to find n points which we will label
zi so that each generator αj fixes all zi where j 6= i and does not
fix zj . Given these points it will be easy to show that the line seg-
ments {[zi, αi(zi)]}n

i=1 share a common midpoint and are mutually
perpendicular. The convex hull of these points is then an (irreg-
ular) n-dimensional octahedron whose dual is the n-dimensional
cube we need for our proof.

For each i ≤ n let zi be the barycenter of the orbit of y under
the subgroup generated by {α1, . . . , αi−1, αi+1, . . . , αn}. Then if
i 6= j, a straightforward computation shows that αj(zi) = zi. Our
concern is that αi might also fix zi. Since no generator fixes y, we

can show that αi cannot fix both zi and zi − y
2 + αi(y)

2 . Further,

for i 6= j, αj fixes both zi and zi − y
2 + αi(y)

2 . Thus if αi fixes zi

replace zi with zi − y
2 + αi(y)

2 . Thus we can find the zi’s we desire.

Since each zi is the barycenter of exactly half of the Zn
2 -images

of y and αi(zi) is the barycenter of the other half, for each i the

midpoint of [zi, αi(zi)],
zi+αi(zi)

2 , is the barycenter of the Zn
2 -orbit

of y. Thus the line segments {[zi, αi(zi)]}n
i=1 share a common mid-

point.

Since αj [zj, zi] = [αj(zj), zi], we see that zi is equidistant from
zj and αj(zj). Similarly αi(zi) is equidistant from zj and αj(zj).
Using dot products of vectors to express length we have

〈~zi − ~zj , ~zi − ~zj〉 = 〈~zi − αj(~zj), ~zi − αj(~zj)〉.
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Then

‖~zi‖2 − 2〈~zi, ~zj〉 + ‖~zj‖2 = ‖~z2
i ‖ − 2〈~zi, αj(~zj)〉 + ‖αj(~zj)‖2 =⇒

2〈~zi, ~zj〉 − ‖~zj‖2 = 2〈~zi, αj(~zj)〉 − ‖αj(~zj)‖2.

Similarly

2〈αi(~zi), ~zj〉 − ‖~zj‖2 = 2〈αi(~zi), αj(~zj)〉 − ‖αj(~zj)‖2.

Combining the second with the first yields

〈~zi, ~zj〉 − 〈αi(~zi), ~zj〉 = 〈~zi, αj(~zj)〉 − 〈αi(~zi), αj(~zj)〉.

Thus 〈~zi − αi(~zi), ~zj〉 = 〈~zi − αi(~zi), αj(~zj)〉 or 〈~zi − αi(~zi), ~zj −
αj(~zj)〉 = 0. Thus for each i 6= j, the vectors ~zi − αj(~zi) and
~zj −αi(~zj) are perpendicular. Further since the corresponding line
segments share a common midpoint, the segments themselves are
perpendicular.

We may choose 2n points on these line segments (within the
span of X) that are equidistant from the common midpoint. The
convex hull of these 2n points is an n-dimensional octahedron, the
dual to the n-dimensional cube. There is a transitive isometric
action of Zn

2 on the faces of the octahedron which gives a transitive
Zn

2 -action on the vertices of the dual cube. Further we can check
that the generators α1, . . . , αn act as a reflections, each transposing
opposite (n−1)-dimensional faces of the cube. Thus we have found
the cube necessary for our induction argument.

Case 2. αn(Y ) ∩ Y 6= ∅.

Then there is some β ∈ Zn−1
2 so that αn(y) = β(y) =⇒ βαn(y) =

y. Replace αn by βαn as our nth generator. Thus we may assume
that αn fixes y itself and therefore fixes Y pointwise.

Since, by the inductive hypothesis, Y is an (n− 1)-dimensional
cube with opposite faces transposed by the generators α1, . . . , αn−1,
we can take the dual of this cube and get an (n − 1)-dimensional
octahedron. For each pair of opposing (n− 2)-dimensional faces of
this cube, identify the generator αi that transposes them and label
the barycenter of one of these faces as zi. The barycenter of the
other is then αi(zi). The set of points {zi, αi(zi)}n−1

i=1 is the vertex
set of the octahedron that is dual to our (n − 1)-dimension cube.
Thus the line segments {[zi, αi(zi)]}n−1

i=1 are mutually orthogonal
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and share a common midpoint – the barycenter of Y . Call this
barycenter b and note that it is fixed by each of α1, . . . , αn−1.

Since Zn
2 is the isometry group of X , there is some point in X

that is moved by αn. Call this point zn. Suppose that the midpoint
of [zn, αn(zn)] is distinct from the common midpoint shared by each
of {[zi, αi(zi)]}n−1

i=1 . Then we will “shift” the segment [zn, αn(zn)]

by b − zn+αn(zn)
2 so that these midpoints will be equal. That is,

replace zn with the point zn+b− zn+αn(zn)
2 . A simple computation

shows that the midpoint of the new line segment [zn, αn(zn)] is b.

Notice that since αn fixes each point of Y , for each i both zi and
αi(zi) are equidistant from zn and αn(zn). Using a computation
identical to that of Case 1, it is easy to see that for each 1 ≤ i ≤
n − 1, the vectors ~zn − αn(~zn) and ~zi − αi(~zi) are perpendicular.
Thus we have n mutually orthogonal line segments {[zi, αi(zi)]}n

i=1

meeting at a common midpoint.

We now have exactly the same situation we had in Case 1.
Therefore in this case also we can find the n-dimensional cube
required by the inductive argument.

3 Transitive Realizations

The last example from the introduction shows that the orbit num-
ber of Zn

2 is 1. We now show that no other abelian group of isome-
tries can have a realization with just one orbit.

Theorem 2. If G is abelian and the orbit number of G equals 1,
then G ∼= Zn

2 .

Proof. Suppose W is a one orbit realization of G. Since the stabi-
lizers within an orbit are conjugate and G is abelian, the stabilizers
are identical. Since W realizes G, the stabilizers are therefore triv-
ial. Thus we can identify the points of W with the elements of
G.

Consider γ : W → W given by γ(w) = w−1. If u, v ∈ W ,

dist(u, v) = dist((u−1v−1)u, (u−1v−1)v) =

dist(v−1, u−1) = dist(u−1, v−1) = dist(γ(u), γ(v)).
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Thus γ is an isometry. It clearly fixes the identity element – but all
stabilizers here are trivial. Thus γ must be the identity isometry.
So if w ∈ G, then w = w−1. Thus G ∼= Zn

2 .

We close with some constructions of transitive realizations. There
appear to be a wealth of these.

Examples:

1. S3 in R2: Let W =
{
(1, 0) ,

(
− 1

2 ,
√

3
2

)
,
(
− 1

2 ,−
√

3
2

)}
.

2. S3 × Z2 in R3:

Let W =
{

(1, 0, 0) ,
(
− 1

2 ,
√

3
2 , 0

)
,
(
−1

2 ,−
√

3
2 , 0

)
,

(1, 0, 5) ,
(
− 1

2 ,
√

3
2 ,5

)
,
(
− 1

2 ,−
√

3
2 , 5

)}
.

3. S3 × S3 × Z2 in R4:

Let W =
{

(1, 0, 0,0) ,
(
− 1

2 ,
√

3
2 ,0, 0

)
,
(
− 1

2 ,−
√

3
2 ,0, 0

)
,

(0, 0, 1, 0) ,
(
0, 0,−1

2 ,
√

3
2

)
,
(
0, 0,−1

2 ,−
√

3
2

)}
.

4. S3 × S3 in R4:

Let W =
{

(1, 0, 0,0) ,
(
− 1

2 ,
√

3
2 ,0, 0

)
,
(
− 1

2 ,−
√

3
2 ,0, 0

)
,

(0, 0, 2, 0) ,
(
0,0,−1,

√
3
)
,
(
0,0,−1,−

√
3
)}

.
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