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Non-Hermitian Quantum Mechanics

Abstract

by

KATHERINE JONES-SMITH

The basic structure of quantum mechanics was delineated in the early

days of the theory and has not been modified since. One of the

fundamental assumptions used in formulating the theory is that

operators are represented by Hermitian matrices. In recent years it has

been shown that quantum mechanics can be formulated consistently

without making this assumption, using instead a combination of the

parity (P) and time-reversal (T) operators and a number of other

requirements related to P and T . Only the case of even T has been

analyzed in the literature; here we generalize the principles to include

odd time-reversal. We use this generalization to construct a

non-Hermitian version of the Dirac equation, and in doing so discover a

new type of particle not allowed within the (Hermitian) Standard Model.

Finally we present a potential application of the ideas of non-Hermitian

quantum mechanics to the unsolved problems of quantum magnetism

and high temperature superconductivity.
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Chapter 1

Introduction

Quantum mechanics originated as a set of ad hoc rules that attempted to explain a

number of seemingly unrelated experimental results. These ad hoc rules amalgamated

into the basic principles of quantum mechanics that were delineated in the 1930’s and

have not been modified since [1]. Still, it is desirable to ask whether the structure can

be altered and generalized. For example Weinberg showed that it is possible to for-

mulate a non-linear generalization of quantum mechanics and to thereby subject the

linearity of quantum mechanics to a quantitative test [2]. A fruitful generalization of

the canonical principles, was the discovery that particles can have fractional statistics

that interpolate between Bose and Fermi, albeit only in two spatial dimensions [3].

More recently the principle that the Hamiltonian and other observables should be

represented by Hermitian operators has been re-examined [4].

When most physicists hear the term ‘Hermitian’, they think of a matrix which is

equal to its complex conjugate transpose. But in this context Hermiticity is just short

for self-adjoint. An operator A that is self adjoint has the very reasonable property

that its e↵ect on the vectors of the Hilbert space in which it is defined is independent

of what vector it acted on first. Using the standard Dirac bra and ket notation we

can write this as h�|A i = hA�| i. But the specific matrix properties enforced by

1



self-adjoincy depend on the definition of an inner product used, and there are infinite

ways to define an inner product on a vector space. Vectors in the Hilbert space are

written in terms of the basis vectors, and if the basis vectors are orthonormal then the

inner product is just the standard one: h�| i =
P

i �
⇤
i i = �† . So an operator that

is ‘Hermitian’ is self-adjoint with respect to a given inner product rule, and in the

case of the standard Hermitian inner product this means the matrix representation

of the operator is equal to its complex conjugate transpose.

About a decade ago, Carl Bender et al showed that the assumption that oper-

ators, most importantly the Hamiltonian operator, need not be Hermitian in order

to construct a consistent theory of quantum mechanics [4]. He showed that all of

the virtues of Hermiticity e.g. real eigenvalues, unitary time evolution, etc., can be

obtained by adopting an alternative set of assumptions. Non-Hermitian quantum

mechanics is only “non-Hermitian” with respect to the standard inner product; op-

erators in Bender’s theory are self-adjoint with respect to a di↵erent inner product.

Unlike the assumption of Hermiticity, the assumptions drafted by Bender cannot be

summarized into a single statement, and so at first one might wonder why trade one

perfectly good axiom for a whole bunch of them– isnt it easier and more importantly,

more elegant to just assume operators are Hermitian? Furthermore Hermiticity is

selected out by the orthonormal basis vectors as their preferred inner product, so

why bother with a di↵erent inner product and di↵erent set of assumptions?

The reasons for considering inner products besides the standard one and non-

Hermitian Hamiltonians are several. First, non-Hermitian quantum mechanics en-

larges the set of Hamiltonians we are allowed to consider quantum mechanically, so

it increases the number of systems we can analyze and solve. Another reason is that

non-Hermitian quantum mechanics puts physical properties and principles at the fore-

front of the theory; specifically, the parity (P) and time-reversal (T) operators taken

on the analogous role to the Hermitian conjugate. In comparison with the P and
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T operators, the complex conjugate transpose seems rather arbitrary, (and we wind

up imposing P and T symmetry in Hermitian theories later down the line, so why

not at the level of axioms.) And then there is the so-called totalitarian principle:

“Anything which is not forbidden is compulsory”. First introduced in T.H. White’s

The Once and Future King as the governing principle of a colony of ants [5], and

later conjectured by Murray Gell-Mann to apply to the physical laws that govern the

universe [6], the totalitarian principle in this case says that there needn’t be anything

wrong with Hermitian quantum mechanics– but if we can do non-Hermitian quantum

mechanics then we must.

That is a splendid concept but it is not going to convince your grant monitor. So is

there any real reason to pursue non-Hermitian quantum mechanics? In what follows

I hope to convince you that there is, and that non-Hermitian quantum mechanics is

the idea that one might discover new and physically relevant theories by considering

other inner products than the standard one.

We begin by constructing the formal extension of Bender’s PT quantum mechan-

ics to include systems that are odd under time-reversal (T 2 = �1). This formalism is

used to develop a non-Hermitian version of the Dirac equation in Chapter 2. We show

that, remarkably, the Dirac equation constructed according to the principles of PT

quantum mechanics is identical to the Hermitian Dirac equation, thereby endowing

non-Hermitian quantum mechanics with a host of observed phenomena; anything that

is accurately described by the standard Dirac equation is also described by the PT

Dirac equation. Even more remarkable is that higher dimensional representations1

of the non-Hermitian Dirac equation describe new particles, with properties forbid-

den in ordinary quantum mechanics and the Standard Model. Finally we present

an example of non-Hermitan quantum mechanics from the condensed matter liter-

ature; in 1956 Dyson [7] showed that high precision calculations of interacting spin

1The dimensionality here is that of the Hamiltonian and other operators. The spacetime dimen-
sionality we assume is that of the real world, ie 3+1.
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waves in a ferromagnet were facilitated by employing a non-Hermitian Hamiltonian.

We recast this result in the context of PT quantum mechanics and speculate on

whether non-Hermitian quantum mechanics may be able to shed light on the most

outstanding problem in condensed matter physics, the theory of high temperature

superconductivity[8].
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Chapter 2

Todd PT Quantum Mechanics

2.1 Time-Reversal in Quantum Mechanics

Wigner was the first to derive properties and consequences of time-reversal symmetry

in quantum mechanics [11] . He assumed time-reversal symmetry (T ) should be

antilinear in order to be consistent with the Schrödinger equation, among other things.

It follows that there are only two types of time reversal, even (T 2 = 1)and odd

(T 2 = �1). To see this, assume T is anti-linear:

T = L ⇤ (2.1)

where L is a linear operator (this is the definition of an anti-linear operator– one that

can be written as complex conjugation followed by a linear operator). T 2 should leave

a state unchanged up to a phase factor: T 2 = ei� . It follows that

LL⇤ = ei� (2.2)

) L⇤ = ei�L�1

.
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Complex conjugating both sides gives

L = e�i� (L�1 )⇤. (2.3)

So LL⇤ = e�i� also, which implies

(eı� )2 = 1 ! eı� = ±1. (2.4)

Wigner assumed that L is unitary; the proof given here does not make that assumption

and hence generalizes the proposition to the non-Hermitian case.

Note that there is a subtle di↵erence in the way anti-linear operators transform

under change of basis as compared to linear operators: suppose that in some basis

T = L ⇤. (2.5)

where  is the N component wave function and L is a N ⇥N matrix. If we perform

a change basis  0 = V  for some transformation matrix V , in this new basis T has

the form

T 0 = L0 0⇤. (2.6)

To determine the matrix L0 we may proceed as follows. The wave function of the

state in the old basis is given by V �1 0. By eq (2.5) the time-reversed state has wave

function LV �1⇤ 0⇤ in the old basis. Thus the time-reversed state has wave function

V LV �1⇤ 0⇤ in the new basis. Comparing to eq (2.6) we conclude

L0 = V LV �1⇤. (2.7)

Note that by contrast if T had been a linear operator represented by a matrix L in

the old basis, then in the new basis it would have the matrix V LV �1.
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In all work on PT quantum mechanics to date it has been implicitly assumed that

time reversal is even, T 2 = 1. However in quantum theory this is only true of bosonic

systems with integer spin. For fermionic systems, with half-integer spin, time-reversal

is odd. Quarks and leptons in particle physics, approximately half of all nuclei and

atoms, and a plethora of condensed matter problems including magnetic spin models

and solid state electronic matter fall into this category. Thus it is clearly important

to generalize the construction of PT quantum mechanics to the case that T is odd.

2.2 Teven PT Quantum Mechanics

Before embarking on our generalization of Bender’s PT quantum mechanics to the

case where time-reversal is odd, it is useful to recall the key principles of PT quantum

mechanics for the case that time reversal is even. For simplicity let us assume that

the Hilbert space of states has finite dimension N so that the state of the system

may be specified by a wavefunction that is an N component column vector with

complex components  (n), with n = 1, 2, 3, . . . N . We will work in a basis such that

the operation of time reversal consists of simply taking the complex conjugate of the

wavefunction, T =  ⇤; thus T 2 = 1; such a basis can always be found.

Parity is a linear operator so it may be represented by a matrix that we denote S;

thus P = S . We assume [P, T ] = 0 and that parity applied twice is the identity

transformation; this implies S = S⇤ and that S2 = I . Since S2 = I then it must

have eigenvalues ±1, and without loss of generality we can find a basis in which S is

diagonal and T still consists of simple conjugation.

To see this, recall how T transforms under basis change from eq (2.7). If we make

a change of basis  0 = U�1 , then T 0 = U�1U⇤ 0⇤ , but because P is linear and S

is real and squares to the identity, P 0 = U�1SU 0. If we can choose U such that
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S 0 = U�1SU is diagonal and U�1U⇤ = I, then we will have achieved the desired basis

transformation: in the primed basis parity will be diagonal and time-reversal will still

consist of just complex conjugation.

S is real and squares to the identity, so the eigenvectors of S may be chosen to be

real (because they are determined by solving S = � and both S and � = ±1 are

real). Let us construct the matrix

U =

0

BBBB@

| |

 1 . . .  N

| |

1

CCCCA
; (2.8)

here  1, . . . , N are the real eigenvectors of S. This matrix is real and by the cus-

tomary reasoning in linear algebra it diagonalizes S

U�1SU =

0

BBBB@

�1

...
�N

1

CCCCA
. (2.9)

Hence we can always find a basis in which S can be written

S =

0

B@
I 0

0 �I

1

CA (2.10)

where I denotes the N/2 dimensional identity matrix. (We have assumed N is even

and that S is traceless just for simplicity.)

In quantummechanics one conventionally defines the inner product of two states as

(�, ) = �† =
PN

n=1 �
⇤(n) (n). However in PT quantum mechanics a di↵erent inner

product is used. Because the inner product plays an integral role in the formulation

of non-Hermitian quantum mechanics, we digress briefly to recall some properties of
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the inner product.

2.2.1 Properties of the Inner Product

‘Inner product’ refers to the rubric one uses to combine vectors in a vector space [9].

The inner product is not unique, in fact infinitely many inner products exist for a

given vector space[?]. If u and v are vectors in a vector space, we denote their inner

product as (u, v) ; in general it is a complex number. Inner products are assumed to

satisfy two conditions. First, it is assumed that (u, v) = (v, u)⇤. Second, it is assumed

that the inner product rule is bilinear which means that:

(i) (u, v + w) = (u, v) + (u, w) and (u+ v, w) = (u, w) + (v, w)

(ii) (u, cv) = c(u, v) where c is a complex number.

(iii) (cu, v) = c⇤(u, v).

In physics we also require that the inner product of a vector with itself be positive,

and be zero in the case that one of the vectors is the zero vector. Such inner products

are called positive definite.

A vector space is of course spanned by a set of basis vectors; the inner product is

related to the basis vectors by calculating inner product of all pairs of basis vectors:

if e1, . . . , eN form a basis for vector space V ,

ij = (ei, ej) (2.11)

ij are called the kernel of the inner product. If the kernel is known, the inner product

of any pair of vectors can be evaluated. Specifically consider the vectors

u = b1e1 + b2e2 + . . .+ bNeN

v = c1e1 + c2e2 + . . .+ cNeN (2.12)

9



where the coe�cients are complex numbers. Their inner product is

(u, v) =
NX

i=1

NX

j=1

b⇤iijcj (2.13)

Eq (2.13) may be derived by writing

(u, v) = (
NX

i=1

biei,
NX

j=1

cjej) (2.14)

and using the bilinearity of the inner product.

A more compact notation is to write

(u, v) = b†c (2.15)

where b† denotes the row vector (b⇤1, . . . , b
⇤
N), c is the column vector of similar com-

position, and  is the matrix comprised of the kernel elements ij.

A basis is said to be orthonormal if the kernel matrix is the identity:

(ei, ej) = �ij. (2.16)

In an orthonormal basis the formula for inner product eq (2.13) simplifies to

(u, v) = b†c. (2.17)

An orthonormal basis can always be found using the process of Gram-Schmitt

orthogonalization [10]. In physics we usually choose an orthonormal basis, hence the

inner product is the standard Hermitian conjugate. We will refer to this choice as the

standard inner product.
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2.2.2 PT Inner Product

Given that in PT quantum mechanics, P and T take on a role analogous to the

Hermitian conjugate in ordinary quantum mechanics, a natural way to define the PT

inner product is (�, )PT = (PT�)T = �†S . However with this definition there

are some states of negative norm. For example, consider an N dimensional column

vector � which for convenience we break up into a pair of N/2 dimensional segments:

�!

0

B@
�1

�2

1

CA (2.18)

The norm of � under the PT inner product is

(�,�)PT = �†S� = (�⇤
1,�

⇤
2)

0

B@
1 0

0 �1

1

CA

0

B@
�1

�2

1

CA (2.19)

= |�1|
2
� |�2|

2

which is negative for |�1|
2 < |�2|

2. So the PT inner product is not a viable inner

product to use in quantum mechanics.

Positive definiteness is restored by introducing a linear operator C that takes

eigenstates of the Hamiltonian that have negative norm under the PT inner product

and turns them into positive 1. Let  i be eigenvectors of H and si is the sign of the

PT norm of the eigenvector, ( i, i)PT . C is defined by its action on the  i:

C i = si i (2.20)

but because it is a linear operator it can be represented by some matrix K in the

1It is also possible that there are eigenvectors that are orthogonal to themselves under the PT
inner product. In the absence of degeneracies such an orthogonality is a catastrophe in the sense that
it is then impossible to formulate PT quantum mechanics for the Hamiltonian under consideration.
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standard basis:

C = K . (2.21)

The operator C commutes with the combination PT (although it may not commute

with either separately), this implies KS = SK⇤. Furthermore C2 = 1. We now define

the CPT inner product:

(�, )CPT ⌘ (CPT�)T = �†KTS (2.22)

This is the inner product used in PT quantum mechanics in lieu of the standard

inner product. It is evident from the definition given here that the Hamiltonian plays

a crucial role in determining the operator C, so we say that the CPT inner product

is ‘dynamically determined’.

Under the CPT inner product all non-trivial states have positive norm, time evo-

lution is unitary with respect to this inner product. Thus it is possible to consistently

formulate quantum mechanics using the CPT inner product, notwithstanding the

non-Hermiticity of the Hamiltonian.

2.2.3 Observables

Conventionally one requires the Hamiltonian H (and all other observables) to be

Hermitian, H† = H. In this context Hermitian is synonymous with self-adjoint. An

operator A is said to be self-adjoint if (A�, ) = (�, A ). Clearly the choice of inner

product determines the specific matrix properties A must have in order to be self-

adjoint, so it is more precise to say that in ordinary quantum mechanics ‘Hermitian’

means self-adjoint with respect to the standard inner product. Alternatively we can

say that ‘non-Hermitian’ quantum mechanics is Hermitian but with respect to a non-

standard inner product.

We define the CPT adjoint A? of an operator A by imposing (�, A )CPT =

12



(A?�, )CPT for all � and  . Observables are then required to be CPT self-adjoint,

A = A?. This is su�cient to ensure that the eigenvalues of A are real and that the

usual principles of quantum measurement and uncertainty relations may be applied

even though the observables are no longer Hermitian in the usual sense.

The proof of this (as in the Hermitian case) relies on the Schwarz inequality

(↵|↵ )(�|� ) � | (↵|� )2 for any vectors ↵ and � in a vector space with a positive

definite inner product rule. Since we have such an inner product with the definition

given in eq (2.22) we can simply follow the standard proof given in textbooks on

Hermitian quantum mechanics [12].

Assume there are CPT self-adjoint operators A,B, and C such that

[A,B] = iC, (2.23)

and CPT self-adjoint operators O,F and G such that

F = O +O? and G = �i (O �O? ). (2.24)

Then

O =
O +O?

2
+

O �O?

2
=

F

2
+

iG

2
(2.25)

Let us define

|↵) = (A� hAi )| ) (2.26)

|�) = (B � hBi )| )

wherehAi = ( |A| ) is the expectation value of A (and similarly for B), and as such

13



are real numbers. Notice that

(↵|↵) = ( | (A� hAi )2| ) = �A2 (2.27)

(�|�) = ( | (B � hBi )2| ) = �B2

using the standard definition of uncertainty, ie (�x )2 = hx2
i � hxi2. Plugging the

definition of (↵|�) into the right hand side of the Schwarz inequality, we have

(↵|� ) = ( | (A� hAi )(B � hBi )| ). (2.28)

Now if we define O = (A� hAi ) (B � hBi ), then

O �O? = [A,B] = iC (2.29)

from which we conclude G = C. Thus,

|(↵|� )|2 = |
1

2
( |F | ) +

i

2
( |C| )|2 (2.30)

=
|( |F | )|2

4
+

|( |C| )|2

4
�

|( |C| )|2

4

because the expectation values are real. From the Schwarz inequality, then, we see

�A2�B2
�

|hCi|
2

4
) �A�B �

|hCi|

2
. (2.31)

So the famous uncertainty relations are preserved in PT quantum mechanics. Note

that the proof depends only on the positive definiteness of the inner product rule and

the fact that the expectation values are real (and that the operators are self-adjoint,
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of course). Thus it can be applied quite generally to non-Hermitian extensions of

quantum mechanics.

2.2.4 Criteria for Teven Hamiltonians

We have seen that with a di↵erent definition of inner product, it is still possible

formulate a theory with real-valued observables, positive definite norm, and unitary

time evolution. We turn now to the conditions that must be met by the Hamiltonian

operator in particular in order to be a valid PT quantum mechanical system.

Invariance Under PT

First, the Hamiltonian must be invariant under PT (i.e. it must commute with PT ).

If we write H as 0

B@
A B

C D

1

CA (2.32)

where A,B,C and D are arbitrary matrices and [H,PT ] = 0 , then expanding

HPT = PTH :

0

B@
A B

C D

1

CA

0

B@
1 0

0 �1

1

CA ⇤ =

0

B@
1 0

0 �1

1

CA

0

B@
A⇤ B⇤

C⇤ D⇤

1

CA ⇤

0

B@
A �B

C �D

1

CA =

0

B@
A⇤ B⇤

�C⇤
�D⇤

1

CA

hence

H =

0

B@
A iB

iC D

1

CA (2.33)

where now A,B,C and D are real matrices. It also follows from invariance under PT

that the eigenvalues of H come in conjugate pairs: suppose [H,PT ] = 0 and � is an

15



eigenfunction of H with eigenvalue �, and and HPT� = PTH� = PT (�� ). Let

 = PT� = S�⇤, then H = �⇤ . So

H� = ��) PT� = �⇤�. (2.34)

Unbroken PT

The second criterion is that PT must be ‘unbroken’ in the sense that it should be

possible to find eigenvectors of the Hamiltonian,  i, that are invariant under PT (i.e.

PT i =  i). This is crucial as it ensures the eigenvalues of H are real; since this is a

subtlety arising from the prominent role of parity and time-reversal in PT quantum

mechanics, we pause to prove that if PT is unbroken then the eigenvalues of H must

all be real, and the converse, if the eigenvalues H are real then PT is unbroken. Note

that a state that is invariant under PT will have the form

 =

0

B@
⇠

i⌘

1

CA (2.35)

where ⇠ and ⌘ are real column vectors with N/2 components each and we are assuming

that S has the form given in eq (2.10). Before embarking on the proof, we note that

it is an elementary proposition of linear algebra that if H and A commute and are

linear operators then there exists a set of simultaneous eigenvectors. However since

PT is not a linear operator we have no reason to believe that H and PT should

have simultaneous eigenvectors. We also note that proving that PT is unbroken

(or equivalently that the eigenvalues are real) is frequently the most di�cult step in

PT quantum mechanics 2. There is at least one instance involving a Schrödinger

equation with an imaginary potential where the proof is fifty pages and involves the

use of Bethe ansatz!
2Hermiticity is a su�cient condition for the eigenvalues to be real but not necessary. Nonetheless,

a generic non-Hermitian operator has complex eigenvalues; see for example ref[13].
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We first show that if PT is unbroken then the eigenvalues of H are real. Let  i

be a set of eigenvectors of H with eigenvalue �i that are invariant under PT . Now

by the reasoning embodied in eq (2.34) if  i is an eigenvector of H with eigenvalue �i

then PT i is an eigenvector of H with eigenvalue �⇤i . But since  i is invariant under

PT , it follows  i is an eigenvector of H with eigenvalue �⇤i .  i can have eigenvalue

�⇤i and �i only if �⇤i = �i. Thus the eigenvalues are real as claimed.

Next let us prove the converse, that if the eigenvalues of H are real, then PT must

be unbroken. For simplicity we assume that there are N non-degenerate eigenvalues.

Our objective is to find a set of eigenvectors of H that are also invariant under

PT given that the eigenvalues are real. We start from eq (2.34) which asserts that

if  i is an eigenvector of H with eigenvalue �i, then PT i is an eigenvector with

eigenvalue �⇤i . Since the eigenvalues are assumed real,  i and PT i both have the

same eigenvalue �i. Since the spectrum is assumed non-degenerate it follows that the

two states  i and PT i must be linearly dependent on each other; namely PT i =

µ i. We now invoke a lemma (proved below) that µ must be a pure phase, µ =

exp(i�). It is then easy to verify that

PT i = exp(i�) i ) PT  ̃i =  ̃i (2.36)

where  ̃i = exp(�i�/2) i. Thus  ̃i constitute a set of eigenvectors of H that are also

invariant under PT .

Finally, the lemma that if PT = µ , then µ must be pure phase. Note that

PT = µ 

) S ⇤ = µ 

)  TS† = µ⇤ †

)  TS†S ⇤ = |µ|2 † . (2.37)
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Finally note that in the diagonal basis S† = S and therefore S†S = S2 = I. Fur-

thermore  T ⇤ =  † (as can easily be verified by writing both sides in terms of the

components of the wave function). Thus eq (2.37) implies that |µ|2 = 1 and thus µ

is a pure phase as claimed.

Self-duality Under PT Inner Product

First it is useful to recall that the PT inner product is given by

(�, )PT = (PT�)T  = �†S . (2.38)

We assume we are working in a basis wherein time-reversal is given by conjugation.

S is assumed to be real (because P and T commute), symmetric and to satisfy S2 = 1

(because P 2 = 1). It is not necessary to assume that in our basis S is diagonal.

We define AD, the PT dual of the operator A, by the condition that

(AD�, )PT = (�, A )PT . (2.39)

This condition should be met for all states � and  . Using eq (2.38) one can derive

the explicit formula

AD = SA†S (2.40)

The formula eq (2.40) can be simplified further if we assume that A commutes

with PT . In that case we find

AD = AT . (2.41)

The proof is as follows: That A commutes with PT implies AS = SA⇤. Left multi-

plication by S leads to SAS = A⇤. Transposing both sides and bearing in mind that

S is symmetric leads to A† = SATS. Substituting this expression for A† in eq (2.40)

and using S2 = 1 leads to eq (2.41).
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Now to the issue of orthogonality of eigenvectors . Let us suppose that H is

self-dual. Let us also assume that H commutes with PT and that PT is unbroken.

Let  i with i = 1, . . . , N denote the eigenvectors of H and �i the corresponding

eigenvalues. It follows from the assumptions we have made about H (chief among

them, self-duality) that if two eigenvectors have distinct eigenvalues they must be

orthogonal under the PT inner product.

The proof is as follows: By virtue of self-duality, ( i, H j)PT = (H i, j)PT.

Since the  i’s are eigenvectors of H, it follows ( i,�j j)PT = (�i i, j)PT. By the

anti-linear property of inner products this equation may be written as �j ( i, j)PT =

�⇤i ( i, j)PT. Since we have assumed that PT is unbroken, the eigenvalues of H are

real; hence we may write

(�j � �i) ( i, j)PT = 0. (2.42)

It follows that if �i 6= �j then inevitably ( i, j)PT = 0. This establishes the claimed

orthogonality.

Philosophically, we want the eigenvectors of any observable to be orthogonal to

each other under the dynamical inner product since this is a feature of conventional

quantum mechanics. Requiring the Hamiltonian to be self-dual under the PT inner

product is a stepping stone to that goal. It ensures that the eigenvectors of H are

appropriately orthogonal to each other under the PT inner product.

This concludes our rèsumè of the principles of PT quantum mechanics for the case

of even time reversal symmetry. We now construct the extension of these principles

to the case that time reversal symmetry is odd.

2.3 Todd PT Quantum Mechanics

Having reviewed the case of even time-reversal is useful as now we can go more quickly

through the corresponding formalism for the Todd case. Lets begin with the definition
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of inner product. We work in a basis where the action of time-reversal is given by

T = Z ⇤ (2.43)

where Z is a matrix that yields T 2 = � and will be specified later. Once again we

assume P 2 = 1 or equivalently S2 = I and that PT = TP which implies SZ = ZS⇤.

Thus parity can be written

S =

0

B@
IN 0

0 �IN

1

CA . (2.44)

We will prove later that such a basis can always be found. In the even case, the PT

inner product was given by (�, )PT = (PT�)T = �†S . Now that the action of

T has changed we expect the PT inner product to reflect this feature. We define

the PT inner product for Todd systems as (�, )PT = (PT�)TZ = �†S ; note the

crucial insertion of Z. As in the even case, the PT inner product on its own is not

a viable inner product for quantum mechanics because it is not positive definite, so

again we introduce the C operator that acts on eigenstates of the Hamiltonian  i. C

is a linear operator with a corresponding matrix K which has the defining property

that C i = si i where si is the sign of the PT norm of that eigenvector, ( i, i). C

commutes with PT so KSZ = SZK⇤. As in the even case C2 = 1. Observables are

CPT self-adjoint, A = A?, although because the inner product is slightly di↵erent

from the even case the matrix properties of self-adjoint operators are slightly di↵erent

as well. And finally, we impose the same three criteria on Hamiltonian operators as

in the even case:

(i) H is invariant under PT : [H,PT ] = 0

(ii) PT symmetry is unbroken.

(iii) H is self-dual under the PT inner product.
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The criteria are constructed to be the same but they have quite di↵erent impli-

cations here in the Todd case, including a PT analogue of Kramers degeneracy from

ordinary Todd quantum mechanics. For the interested reader we now present the con-

struction of these criteria in detail; the uninterested reader may skip to the next

section.

2.3.1 Construction and Implications of Criteria

Quaternions

First it is useful to review properties and notation relevant to quaternions. In the re-

mainder of this chapter we will refer to 2⇥2 matrices as quaternions. Any quaternion

q can be written

q = q0�0 + iq1�1 + iq2�2 + iq3�3 (2.45)

= q0 + iq · �

=

0

B@
q0 + iq3 iq1 + q2

iq1 � q2 q0 � iq3

1

CA .

The coe�cients q0, q1, q2, q3 are complex numbers in general, but in the case that they

are real we will say the quaternion is real. It is important to realize that this does

not mean the corresponding 2⇥ 2 matrix is real, though. By suitably partitioning a

2N ⇥2N matrix into 2⇥2 blocks one can view it as an N ⇥N matrix of quaternions.

Consider the matrix

Z =

0

BBBBB@

e2

. . .

e2

1

CCCCCA
, where e2 = i�2 =

0

B@
0 1

�1 0

1

CA . (2.46)

Note that Z is an N ⇥ N quaternion matrix. If another quaternion matrix A
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satisfies

AZ = ZA⇤ (2.47)

then A is quaternion real (i.e., it is composed of real quaternions), and vice versa.

If we assume its eigenvalues to be real then A has some interesting properties.

First, that its eigenvalues come in degenerate pairs, one belonging to the eigenvector  

and the other belonging to the eigenvector �Z ⇤. To see this, let  be an eigenvector

of A with the (real) eigenvalue �. Then

A = � 

) A⇤ ⇤ = � ⇤

) �ZA⇤ ⇤ = ��Z ⇤

) A(�Z ⇤) = �(�Z ⇤). (2.48)

So  and �Z ⇤ are both eigenvectors of A with the same eigenvalue �.

The next interesting property is that A is made diagonal by a matrix U which is

also quaternion real. To see this, let  be a 2N component eigenvector of A:

 =

0

BBBBBBBBBB@

a(1)

b(1)

..
.

a(N)

b(N)

1

CCCCCCCCCCA

. (2.49)

Recall that �Z ⇤ is another eigenvector of A with the same eigenvalue as  , and
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from eq (2.46) and (2.49) it follows that

�Z ⇤ =

0

BBBBBBBBBB@

�b(1)⇤

a(1)⇤

..
.

�b(N)⇤

a(N)⇤

1

CCCCCCCCCCA

. (2.50)

If we assemble  and �Z ⇤ into a pair of columns

0

BBBB@

| |

 �Z ⇤

| |

1

CCCCA
=

0

BBBBBBBBBB@

a(1) �b(1)⇤

b(1) a(1)⇤

..
.

..
.

a(N) �b(N)⇤

b(N) a(N)⇤

1

CCCCCCCCCCA

(2.51)

we may regard this eigenvector-doublet as a 2N ⇥ 2 complex matrix or an N compo-

nent quaternion column. If we write the complex numbers a(1) = q0(1) + iq3(1) and

b(1) = �q2(1) + iq1(1) where q0(1), q1(1), q2(1) and q3(1) are all real, then substitute

these definitions into eq (2.51) we find

0

BBBB@

| |

 �Z ⇤

| |

1

CCCCA
=

0

BBBBBBBBBB@

q0(1) + iq3(1) q2(1) + iq1(1)

�q2(1) + iq1(1) q0(1)� iq3(1)

. . . . . .

q0(N) + iq3(N) q2(N) + iq1(N)

�q2(N) + iq1(N) q0(N)� iq3(N)

1

CCCCCCCCCCA

. (2.52)

Comparing to eq (2.46) we see therefore that the eigenvector-doublet is a column of

real quaternions.
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Finally we define U , the ‘eigenmatrix’ of A, by assembling these eigenvector-

doublets into columns,

U =

0

BBBB@

| | | |

 1 �Z ⇤
1 . . .  N �Z ⇤

N

| | | |

1

CCCCA
. (2.53)

Because it is comprised of N eigenvector-doublets that are quaternion real, U itself

and U�1 are also quaternion real, and these matrices serve to diagonalize A:

U�1AU =

0

BBBB@

�1�0

. . .

�N�0

1

CCCCA
. (2.54)

So, when regarded as an N ⇥ N quaternion matrix, A is clearly quaternion real

in light of the analysis of the eigenvector-doublet above.

Representation of Parity and Time Operators

We work in a basis where T = Z ⇤ and Z is given by eq(2.46) ; note that T 2 = � 

as needed. Of course other matrices could satisfy this property but eq(2.46) is best

suited to our purposes. We would like it if , as in the even case, the same basis in

which T has the canonical form eq(2.46) allows us to write parity as eq(2.44); we now

prove such a basis exists.

We make the same assumptions about parity here as we did in section 2.2: P 2 = 1

or equivalently S2 = I , and PT = TP which implies that SZ = ZS⇤.

The first assumption tells us that the eigenvalues of S are ±1, and using the second

assumption and the results of the previous section we know S is a quaternion real

matrix. As such, the eigenvalues of S come in degenerate pairs and the eigenmatrix

U that diagonalizes S may be chosen to be quaternion real.
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Recall from section 2.2 that if we now change basis  0 = V �1 then the matrix

representing parity changes from S to V �1SV and time reversal in the new basis

consists of conjugation followed by multiplication by V �1ZV ⇤.

If we cleverly choose the transformation matrix V = U (the matrix that diago-

nalizes S), then we transform into a basis where parity is diagonal. Time reversal in

this basis consists of conjugation followed by multiplication by U�1ZU⇤. Since U�1 is

quaternion real it obeys U�1Z = ZU�1⇤
) U�1ZU⇤ = Z. Thus in the new basis time

reversal still consists of conjugation followed by multiplication by Z. This proves that

we can always find a basis in which simultaneously S is diagonal and time-reversal

has the canonical form.

Unbroken PT and Kramers Degeneracy

A key role is played in even PT quantum mechanics by states that are invariant under

PT . In odd PT quantum mechanics however there are no states that are invariant

under PT ; the nearest analogue is the concept of the PT doublet which we now

introduce.

Consider the pair of states � and �PT�. Together these states constitute a ‘PT

doublet’. We write the doublet as a 2N ⇥ 2 complex matrix

0

BBBB@

| |

� �PT�

| |

1

CCCCA
. (2.55)

With this definition it is easy to see that if we apply PT to the doublet we get

0

BBBB@

| |

PT� �

| |

1

CCCCA
(2.56)
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because (PT )2 = P 2T 2 = �1. Exactly the same outcome would result if we post-

multiplied the doublet, eq (2.55), by e2 = i�2. Thus the doublet is not left invariant

by PT but it is merely multiplied by a constant matrix. Thus it is a close analogue

of the PT invariant state in Teven PT quantum mechanics.

It is instructive to write out all the components of the doublet. First we work out

the components of � and PT�:

� =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

a(1)

b(1)

. . .

a(N/2)

b(N/2)

a(N/2 + 1)

b(N/2 + 1)

. . .

a(N)

b(N)

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

) PT� =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

b(1)⇤

�a(1)⇤

. . .

b(N/2)⇤

�a(N/2)⇤

�b(N/2 + 1)⇤

a(N/2 + 1)⇤

. . .

�b(N)⇤

a(N)⇤

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (2.57)

For simplicity we have assumed that N is even. Note the subtle di↵erence in the lower

half components of PT� compared to the upper half. Before we stack � and �PT�

side by side let us write out the complex components of � in terms of real parameters.

We define a(i) = q0(i) + iq3(i) and b(i) = �q2(i) + iq1(i) for i = 1, . . . , N/2. For the

lower components we define a(i) = iq0(i)� q3(i) and b(i) = �iq2(i)� q1(i). Here the

q parameters are all real. Re-writing � and PT� in terms of the q parameters and
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stacking them side by side we find that the PT doublet may be written as

0

BBBBBBBBBB@

q0(1)�0 + iq(1) · �

. . . q0(N/2)�0 + iq(N/2) · �

i[q0(N/2 + 1)�0 + iq(N/2 + 1) · �]

. . .

i[q0(1)�0 + iq(1) · �]

1

CCCCCCCCCCA

. (2.58)

In other words, regarded as an N component column of quaternions, the upper half of

the PT doublet is composed of real quaternions and the lower half of pure imaginary

quaternions (real quaternions multiplied by i).

Finally we note that the two vectors of a PT doublet are orthogonal to each other

under the PT inner product. To prove this, suppose that � = PT . We want to

show that (�, )PT = 0. To this end note (�, )PT = (PT�)TZ = [(PT )2 ]TZ =

� TZ . Now

 =

0

BBBBBBBBBB@

a1

b1

. . .

a2N

b2N

1

CCCCCCCCCCA

, �Z =

0

BBBBBBBBBB@

�b1

a1

. . .

�b2N

a2N

1

CCCCCCCCCCA

. (2.59)

Hence � TZ = (�a1b1 + a1b1) + . . .+ (�a2Nb2N + a2Nb2N) = 0.

Additionally, each vector of the doublet has the same inner product with itself:

let � = PT ) PT� = � . We want to show that (�,�)PT = ( , )PT. Note that

(�,�)PT = (PT�)T Z� = � TZ�. (2.60)

On the other hand

( , )PT = (PT )T Z = ��TZ . (2.61)
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Since this expression is just a number it will not change if we transpose it. This leads

to � TZT� =  TZ� (because ZT = �Z in the canonical basis). Thus ( , )PT =

(�,�)PT.

Having explained PT doublets, we now return to the discussion of unbroken PT .

Imposing the first criterion, that [H,PT ] = 0, has the immediate consequence that

the eigenvalues come in conjugate pairs. If � is an eigenvector with eigenvalue �, then

PT� is an eigenvector with eigenvalue �⇤:

H� = ��

) H⇤�⇤ = �⇤�⇤

) SZH⇤�⇤ = �⇤SZ�⇤

) HSZ�⇤ = �⇤SZ�⇤

) H(PT�) = �⇤(PT�). (2.62)

Recall that the condition of unbroken PT when T is even is that we should be

able to find eigenvectors of H that are invariant under PT , and that the purpose of

this condition is to ensure that the eigenvalues of H be real. In the case of Todd, it

is impossible for a state to be invariant under PT , so we generalize the concept of

unbroken PT as follows: we say that PT is unbroken if for every eigenvector � we

find that the pair � and PT� are degenerate.

Clearly this condition ensures the eigenvalues must be real. Note that we have

already demonstrated that the eigenvalues of � and PT� are a conjugate pair, � and

�⇤. If the states are degenerate, the eigenvalues must be real, � = �⇤. Conversely if

the eigenvalues are all real then clearly � and PT� are degenerate and therefore PT

is unbroken.

So in odd PT quantum mechanics the condition of unbroken PT not only ensures

that the eigenvalues of H are real, it also ensures they come in degenerate pairs.
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This is reminiscent of Kramers theorem in ordinary quantum mechanics. Kramer’s

theorem asserts that if time-reversal is odd and H commutes with time-reversal then

the eigenvalues of H will come in degenerate pairs.

Self-duality

The third condition that must be imposed on the Hamiltonian in PT quantum me-

chanics is that H is self-dual under the PT inner product. The purpose of this

condition is to ensure the desirable feature that eigenvectors of H that have distinct

eigenvalues of are orthogonal to each other under the PT inner product.

Recall that the PT inner product is given by

(�, )PT = (PT�)TZ = �†S† . (2.63)

We assume that we are in a basis where T has the canonical form T = Z ⇤, and

in this basis S is quaternion real, S2 = I, and S = S† . This last assumption would

certainly be true in the basis in which S is diagonal and one option is to continue the

discussion in such a basis. However it is true even in a basis in which S is not diagonal

since eq (2.63) reveals that S is the kernel of the PT inner product (see section 2.2.1).

One can show that the kernel of an inner product is a matrix that must be equal to

its conjugate transpose because of the requirement that an inner product should be

bi-linear. Thus we may also write the PT inner product in the form

(�, )PT = �†S . (2.64)

AD, the PT dual of an operator A, is defined in exactly the same way in odd PT

quantum mechanics as in even, by the condition that

(AD�, )PT = (�, A )PT. (2.65)

29



This condition should be met for all states � and  . Using eq (2.65) one can derive

the explicit formula

AD = SA†S; (2.66)

the derivation is exactly the same as in the even case.

Now let us turn to the issue of orthogonality of the eigenvectors of H. Suppose

that H satisfies all three conditions of odd PT quantum mechanics, i.e., it commutes

with PT , PT is unbroken and that H is self-dual. Let  i denote an eigenfunction of

H with the eigenvalue �i. Exactly as in the even case it follows from self-duality

( i, H j)PT = (H i, j)PT

) (�j � �i)( i, j)PT = 0. (2.67)

Thus if �i � �j 6= 0 then ( i, j)PT = 0; in other words if two eigenvectors of H have

distinct eigenvalues, they are orthogonal under the PT inner product.

2.4 New Hamiltonians

Now that we have specified the criteria that must be met in order for a Hamiltonian

to be valid for either Teven or Todd PT quantum mechanics, let us illustrate these

principles by constructing the simplest non-trivial examples. For the even case the

simplest example has N = 2 for the even case and N = 4 for the odd case; the

two-level model for the even case has been discussed before in ref [14].
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2.4.1 Teven Hamiltonians

For the even case the most general 2 ⇥ 2 Hamiltonian matrix that meets all the

conditions of PT quantum mechanics is

H =

0

B@
a ib

ib⇤ �a

1

CA (2.68)

Here a and b are real numbers and we have imposed the additional condition that H is

traceless for simplicity 3. Note that for b 6= 0 this matrix is explicitly non-Hermitian.

It is instructive to compare eq (2.68) to the most general two-level Hermitian Hamil-

tonian that is invariant under even time reversal:

H =

0

B@
a b

b⇤ �a

1

CA (2.69)

Clearly, PT quantum mechanics opens up a new class of Hamiltonians physicists can

analyze.

The eigenvalues of the H in eq(2.68) are ±
p
a2 � b2. Thus PT is unbroken only

for a2 > b2. If this condition is satisfied the Hamiltonian H may be parametrized as

a = ⇢ cosh(�) and b = ⇢ sinh� where ⇢ > 0 and �1 < � < 1. This parametrization

applies for a > 0 which we will assume hereafter. The case a < 0 can be parametrized

and analyzed in exactly the same way. The eigenmatrix is

U =

0

B@
cosh�/2 sinh�/2

i sinh�/2 i cosh�/2

1

CA (2.70)

Here the first column corresponds to the eigenvector with positive eigenvalue ⇢ and

3If H has a trace it can always be written as the trace times the identity plus a traceless part.
Note that the trace term does not a↵ect the eigenvectors and shifts all the eigenvalues by a constant
value. Thus the e↵ects of the trace can be trivially incorporated.
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the second to the negative eigenvalue �⇢; note that the eigenvectors have the PT

invariant form in eq (2.35). It is easy to verify that the positive eigenvector also has

positive PT norm; the negative has negative norm. Thus the operator C is simply

the normalized Hamiltonian (i.e. H divided by the magnitude of the eigenvalues
p
a2 � b2),

C =

0

B@
cosh� i sinh�

i sinh� � cosh�

1

CA (2.71)

Finally the most general operator Aeven that corresponds to an observable by virtue

of being CPT self-adjoint when T is even is given by

A =

0

B@
A0 + A3 � iA1 tanh� A1 � iA2 + iA3 tanh�

A1 + iA2 + iA3 tanh� A0 � A3 + iA1 tanh�

1

CA (2.72)

Note that in the limit � ! 0, the most general observable is simply a Hermitian

matrix; in the same limit the Hamiltonian H becomes Hermitian as well.

2.4.2 Todd Hamiltonians

Finally let us consider the simplest non-trivial example of PT quantum mechanics

for the case of odd time reversal symmetry with N = 4. The most general traceless

Hamiltonian matrix that meets the criteria for Todd is given by

H =

0

B@
a ib

ib† �a

1

CA (2.73)

which is identical to the form of 2.68 except now b is a real quaternion, b0�0+ ib1�1+

ib2�2 + ib3�3, and a is a real quaternion proportional to the identity, a = a0�0. It

is instructive to compare this Hamiltonian to the most general four-level Hermitian
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Hamiltonian that is invariant under odd time-reversal:

H =

0

B@
a b

b† �a

1

CA (2.74)

i.e. eq(2.73) with the pure imaginary o↵-diagonal quaternions replaced by pure

real quaternions, ib ! b. The eigenvalues of the PT invariant Hamiltonian are

±
p
a2 � b2 where a2 = a20 and b2 = b20 + b21 + b22 + b23 denote the magnitudes of

the quaternions a and b. Thus PT is unbroken only for a2 > b2. So long as this

condition is met (and a0 > 0; the case a0 < 0 can be analyzed similarly) we can

parametrize the PT Hamiltonian by writing a0 = cosh� and adopting polar co-

ordinates (sinh�,', ✓,�) in the four dimensional space of the components of b so

that b0 = sinh� cos', b3 = sinh� sin' cos ✓, b1 = sinh� sin' sin ✓ cos� and b2 =

sinh� sin' sin ✓ sin�. In terms of this parametrization the eigenmatrix has the form

U =

0

B@
q cosh�/2 q sinh�/2

iqp sinh�/2 iqp cosh�/2

1

CA (2.75)

Here q is the real quaternion corresponding to a rotation about the nx = sin�, ny =

� cos�, nz = 0 axis by an angle of ✓; and p = exp(�i'�z), a rotation about the z

-axis by an angle 2'. The first two columns correspond to the positive energy PT

doublet; the second two to the negative energy doublet. It is easy to verify that the

positive doublet also has positive PT norm; the negative has negative norm. Thus the

operator C coincides with the normalized Hamiltonian (i.e. H divided by
p
a2 � b2).

Finally, the most general operator Aodd that corresponds to an observable by virtue

of being CPT self-adjoint is

Aodd =

0

B@
q 0

0 qp

1

CAA

0

B@
q† 0

0 p†q†

1

CA (2.76)
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where A is still given by eq (2.72) but with A0, A1, A2 and A3 now interpreted as

arbitrary 2⇥ 2 Hermitian matrices.

It is worth recalling that in conventional quantum mechanics a variety of com-

plicated quantum mechanical problems can be truncated to a two level model [21].

Thus the two and four level models presented here should be regarded not merely as

toy models but as e↵ective Hamiltonians that can be used as the basis for further

investigation of the quantum dynamics of PT quantum systems.
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Chapter 3

Relativistic Non-Hermitian

Quantum Mechanics and the

Non-Hermitian Dirac Equation

In his seminal work on relativistic quantum mechanics Dirac set out to discover a

wave equation that was first order in space and time derivatives and consistent with

special relativity [16]. A key assumption made by Dirac was that the corresponding

Hamiltonian would be Hermitian. In this way Dirac was led to his celebrated equation

which predicted antimatter and describes both electrons and quarks. Should it turn

out to describe neutrinos as well, the Dirac theory would govern all known fermionic

matter in nature.

Remarkably, as we will show in this chapter, the Dirac equation in its fundamental

representation is not unique to Hermitian quantum mechanics/quantum field theory.

By relaxing the assumption of Hermiticity and adopting instead the principles of PT

quantum mechanics outlined in the previous chapter, we do not modify the Dirac

equation at all. The fundamental representation of the Dirac equation emerges com-

pletely in tact, identical in every aspect to the Dirac equation as derived from Hermi-
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tian theory. This is a most intriguing result as it suggests Hermiticity is less crucial of

an assumption than one might think (given that it is one of the fundamental tenets of

quantum mechanics). It also puts non-Hermitian quantum mechanics ‘on the map’ in

the sense that the theory can lay claim to the entire body of physical phenomena that

are successfully described by the Hermitian Dirac equation. An even more intriguing

feature of non-Hermitian quantum mechanics is that higher dimensional representa-

tions of the Dirac equation, which ordinarily decouple into independent fermions in

Hermitian Dirac theory, here describe new types of particles, with exciting properties

forbidden within the Standard Model.

3.1 Dirac Hamiltonian

The Schrödinger equation states that the time evolution of a wave function is dictated

by the Hamiltonian that governs the system:

i
@ 

@t
= H . (3.1)

(Here and in the rest of the document we work in units where ~ = 1.) A free particle

of mass m has H = p2/2m ; suppose we take  to be a plane wave eigenstate of H

and p = �ir, then the energy E where H = E is given by E = p2/2m. For each

energy eigenvalue there are two degenerate states, one with momentum p and one

with momentum -p , which of course correspond to a right or left moving particle.

The principles of special relativity give a di↵erent energy for a massive relativistic

particle, namely E =
p

p2 +m2. Dirac sought to construct a Hamiltonian that would

give the relativistically correct energy eigenvalue when inserted in the Schrödinger

equation; in 1927 he postulated the following Hamiltonian

HD = �i↵ ·r+ � (3.2)
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where ↵ and � are matrices that satisfy the ‘Dirac algebra’

{↵i,↵j} = 2�ij, {↵i, �} = 0. (3.3)

To ensure the Hermiticity of HD Dirac assumed the ↵ and � matrices were Hermitian.

In addition he assumed that �2 = I.

To see that (3.2) gives the correct energy eigenvalues, square the Hamiltonian:

H2
D = E2 , (3.4)

( (↵ · p )2 + �2m2 + (↵ · p )�m+ �m (↵ · p ) ) = E2 . (3.5)

Making use of eq(3.3), this reduces to

(p2 +m2) = E2 (3.6)

or E = ±

p
p2 +m2, which, in the positive case, is the energy of a free relativistic

particle of mass m. The negative case of course is what led Dirac to propose the

existence of antiparticles, in order to explain how a free particle could have negative

energy.

3.1.1 Properties of the Dirac Algebra

Matrices of di↵erent dimensionality can satisfy (3.3); we will refer to these as di↵erent

representations of the Dirac equation.

Pauli Matrices

The simplest representation is 2-dimensional, and there are two of these: ↵i ! ±�i

where �i are the Pauli matrices. It is not surprising that the Pauli matrices show
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up here given that they form a basis for all traceless Hermitian 2 ⇥ 2 matrices with

real coe�cients, and with the inclusion of the 2 ⇥ 2 identity matrix I2⇥2 ⌘ �0 they

form a basis for all 2⇥ 2 matrices. The two 2-d representations are referred to as the

left-handed (↵i ! �i) and right-handed (↵i ! ��i)Weyl representations. For the 2-d

representation, we must have � = 0, because no 2⇥ 2 matrix anti-commutes with all

three �i:

let A be an arbitrary 2⇥ 2 matrix,

A =

0

B@
a b

c d

1

CA (3.7)

and recall the Pauli matrices

�1 =

0

B@
0 1

1 0

1

CA , �2 =

0

B@
0 �i

i 0

1

CA , �3 =

0

B@
1 0

0 �1

1

CA (3.8)

If {�1, A} = 0 then

0

B@
b+ c a+ d

b+ c a+ d

1

CA = 0 ) c = �b, d = �a (3.9)

but if {�2, A} = 0 then

0

B@
2ib 0

0 2ib

1

CA = 0 ) b = 0 (3.10)

and if {�3, A} = 0 then

0

B@
2a 0

0 2a

1

CA = 0 ) a = 0. (3.11)
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In fact there are a number of properties of the �i that we will use heavily in this

chapter; we pause now to identify and prove some of them for easy reference later.

Similar to the proof that no 2 ⇥ 2 matrix anti-commutes with all three �i, one can

show:

(a) if a matrix commutes with all of the �i then it must be

diagonal;

(b) if A�⇤
i = �iA, then A = 0,

(c) if A�⇤
i = ��iA then: A must have the form A = be2 where

b is a complex number and e2 = i�2 ,or more explicitly

e2 =

0

B@
0 1

�1 0

1

CA . (3.12)

The left and right handed Weyl representions are the only two choices for 2-

d matrices that satisfy the Dirac algebra; any other 2-d representation is unitarily

equivalent to a Weyl representation:

if ↵i are 2⇥ 2 Hermitian matrices and {↵i,↵j} = 2�ij then ↵i = U�iU † or

↵i = �U�iU † where U is a unitary matrix.

Because we are interested in non-Hermitian representations as well, we note that

if ↵i are 2 ⇥ 2 matrices and {↵i,↵j} = 2�ij then ↵i = V �iV �1 or ↵i =

�V �iV �1 where V is an invertible matrix.

A simple way to obtain higher dimensional representations of the Dirac algebra is

to construct direct sums of Weyl representations. For example we construct a 4-d rep-
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resentation by pairing a left and a right Weyl representation; the most straightforward

way to do this is

↵i !

0

B@
�i 0

0 ��i

1

CA . (3.13)

More general 4⇥ 4 representations can be obtained by

↵i =

0

B@
V �iV † 0

0 �W�iW †

1

CA or ↵i =

0

B@
V �iV �1 0

0 �W�iW�1

1

CA (3.14)

for the Hermitian and non-Hermitian cases respectively. Along the same lines one

can show that � follows similar constraints. The 2⇥ 2 case requires �=0 , in the 4-d

representation all valid choices of � are unitarily equivalent to

� = m

0

B@
0 1

1 0

1

CA . (3.15)

The proof of these statements of unitary equivalence are straightforward but we

will not pause to show them all here.

Lorentz Invariance

The last aspect of the Dirac algebra that we will explore in this section is the connec-

tion to Lorentz invariance. It turns out that in addition to giving the correct energy

eigenvalues, the Dirac algebra ensures a Lorentz invariant theory.

Lorentz invariance can be demonstrated in a number of ways; here will take the

brute force approach of showing that eigenfunctions of the Hamiltonian that undergo

a Lorentz transformation remain eigenfunctions of the same Hamiltonian. Suppose

u exp(ip · r) is an eigenfunction of HD with energy E:

(↵ · p+ �m)u = Eu. (3.16)
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Suppose the state u0 related to u by a Lorentz boost along the x-axis: u0 = ⇤�1u ,

where ⇤ = exp(�iKx⇣) , ⇣ is the rapidity parameter and we posit1 that the generators

of boosts and rotations are themselves the ↵i :

Kx =
i

2
↵x, Jx = �

i

2
↵y↵z, etc. (3.17)

To see if the theory is Lorentz invariant we must determine whether u0 is an eigen-

function of HD. Plugging u0 into eq (3.16),

(↵ · p+ �m)⇤u0 = E⇤u0. (3.18)

Multiplying by ⇤, we have

⇤(↵ · p+ �m)⇤u0 = E⇤2u0 (3.19)

⇤(↵xpx + ↵ypy + ↵zpz)⇤u
0 + ⇤�m⇤u0 = E⇤2u0

(3.20)

Noting that

⇤ = exp

✓
⇣

2
↵x

◆
= cosh

⇣

2
I+ ↵x sinh

⇣

2
(3.21)

and using eq(3.3), we see that

⇤↵x⇤ = ↵x cosh ⇣ + sinh ⇣ I. (3.22)

Because ↵x anticommutes with ↵y,↵z, and �, those components do not change under

1More on this choice in section 3.2.1.
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the boost:

⇤↵y⇤ = ↵y

⇤↵z⇤ = ↵z

⇤�⇤ = �. (3.23)

Finally, it is useful to note that

⇤2 = cosh ⇣ I+ ↵x sinh ⇣ (3.24)

Using this to rewrite eq(3.20), we have

(↵x(pxcosh⇣ � Esinh⇣) + ↵ypy + ↵zpz)u
0 + �mu0 = E(cosh ⇣I� px sinh ⇣)u

0 (3.25)

Recognizing that the momentum and energy of the boosted state u0 will have the

standard form,

E 0 = E cosh ⇣ � px sinh ⇣

p0x = px cosh ⇣ � E sinh ⇣

p0y = py

p0z = pz, (3.26)

and writing eq(3.25) in terms of these, we have

(↵xp
0
x + ↵yp

0y + ↵zp
0
z)u

0 + �mu0 = (E cosh ⇣ � px sinh ⇣)u
0 (3.27)

(↵ · p0 + �m)u0 = E 0u0
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Thus, by virtue of the Dirac algebra, the theory is Lorentz invariant. Note that the

proof did not assume anything about the specific form of the ↵ and � matrices, nor

their dimensionality, nor that they were Hermitian, only that they obey the Dirac

algebra.

3.1.2 Fundamental Representation

Armed with these properties of the ↵, we now construct the standard Hermitian

Dirac equation as it provides a basis for the rest of the models we discuss. Typically

we think of ‘the Dirac equation’ as the equations of motion for a Dirac fermion,

i�µ@µ L = m R (3.28)

i�̄µ@µ R = m L

(3.29)

where �̄µ = ��µ for µ = 1, 2, 3 and �̄µ = �µ for µ = 0. These equations of motion

arise from the Lagrangian

LDirac =  †
Li�

µ@µ L +  †
Ri�̄

µ@µ R +m †
L R +m †

R L (3.30)

by the standard techniques of variational calculus provided we treat  and  † as in-

dependent quantities. The physical interpretation suggested by (3.29) is that a Dirac

fermion is a pair of Weyl spinors coupled by a mass term. Recall the 2-d Weyl repre-

sentation requires �=0, so a Weyl particle can be thought of as a (fictional) massless

2-component spinor  L or  R.

Although the form of the Dirac equation we use here, eq (3.2), is closer to the way
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Dirac originally constructed relativistic quantum mechanics, it bears little notational

resemblance to the modern way of writing the Dirac equation (3.29). To see the mod-

ern notation arise from (3.2), consider the most straightforward2 4⇥ 4 representation

of ↵i and �:

↵i !

0

B@
�i 0

0 ��i

1

CA (3.31)

and

� = m

0

B@
0 1

1 0

1

CA . (3.32)

The Schrödinger equation states

H = i
@ 

@t
. (3.33)

Assume  is comprised of a left- and right-handed Weyl spinor:

 !

0

B@
 L

 R

1

CA

Using HD = �i↵ ·r+ � and the representations (3.31) and (3.32), we have

�i

0

B@
� ·r 0

0 �� ·r

1

CA

0

B@
 L

 R

1

CA+

0

B@
0 m

m 0

1

CA

0

B@
 L

 R

1

CA = i
@

@t

0

B@
 L

 R

1

CA (3.34)

0

B@
�i(� ·r) L

�i(�� ·r) R

1

CA+

0

B@
m R

m L

1

CA = i
@

@t

0

B@
 L

 R

1

CA (3.35)

2As stated in previous section any other valid choice for ↵i and � can be unitarily transformed
into these.
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With a little rearranging,

i(� ·r) L + i
@ L

@t
= m L (3.36)

i(�� ·r) R + i
@ R

@t
= m R

or,

i�µ@µ L = m R (3.37)

i�̄µ@µ R = m L

(3.38)

Thus, the familiar Dirac equation is resolved from the Hamiltonian (3.2) and the

representations (3.31) and (3.32). We call this the ‘fundamental’ representation be-

cause it describes the fermions originally proposed by Dirac, ie a pair of Weyl spinors

coupled by mass m, with dispersion appropriate to a massive relativistic particle,

E = ±

p
p2 +m2. Physically the Dirac fermion is a particle-antiparticle pair, the

particle being the spinor with the positive eigenvalue and the antiparticle being the

spinor with the negative eigenvalue.

3.1.3 Dirac quartet

In the previous section, we paired up two Weyl representations via direct sum and

obtained a far more interesting particle than that described by either of the indi-

vidual Weyl representations. Naturally one might extend this procedure to higher

dimensional representations and ask whether, for example, a pair of Dirac fermions

combine to form still more interesting particles. In this section we address this ques-

tion, assuming the rules of ordinary Hermitian quantum mechanics.
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The direct sum of two fundamental representations (3.31) and (3.32) is of course

comprised of four Weyl fermions, 2 left-handed and 2 right-handed, so we call this

model the Dirac ‘quartet’. Keep in mind that this is actually an 8-dimensional repre-

sentation, as we will often use various 2⇥2 matrix abbreviations to make the formulae

more manageable.

For the 8⇥ 8 representation we have

↵i !

2

66666664

�i 0 0 0

0 �i 0 0

0 0 ��i 0

0 0 0 ��i

3

77777775

. (3.39)

and the most general choice of the mass matrix is

� =

0

B@
0 M

M † 0

1

CA where M =

0

B@
m1�0 m2�0

m3�0 m4�0

1

CA (3.40)

where the m’s are arbitrary complex numbers.

In the case of a single Dirac fermion, the particle-antiparticle pair are inextricably

linked through the mass matrix �; there is no way to decouple  L from  R unless

� = 0. From the more complicated form of the � matrix in the 8-d case (eq (3.40)) its

tempting to assume the particle described by the Dirac quartet is also an inextricable

merger of left and right-handed Weyl particles coupled by the mass matrix. However,

a suitable unitary transformation shows that the Dirac quartet decouples into two

independent Dirac fermions. To see this, we employ the process of singular value

decomposition.

Singular value decomposition is essentially the statement that an n⇥n matrix M

can be written as M = UµV † where µ is the diagonal matrix comprised of the square

roots of the eigenvalues of M †M (or MM †), which are all real and positive:
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µ =

0

BBBBBBBB@

µ1

µ2

...
µn

1

CCCCCCCCA

(3.41)

and U † is the eigenmatrix of MM † and V † is the eigenmatrix of M †M . The most

general form of � is eq(3.40), so in this case M †M has two-fold degenerate eigenvalues

µ2
1 and µ2

2. Thus

µ =

0

B@
µ1�0 0

0 µ2�0

1

CA (3.42)

We can write the eigenmatrices U and V as

U =

0

B@
u1�0 u2�0

u3�0 u4�0

1

CA , V =

0

B@
v1�0 v2�0

v3�0 v4�0

1

CA (3.43)

where ui and vi are complex numbers. Now

� =

0

B@
0 M

M † 0

1

CA =

0

B@
0 UµV †

V µU † 0

1

CA (3.44)

and if we perform a unitary transformation W †�W where

W =

0

B@
U 0

0 V

1

CA (3.45)
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this transforms � in the following way:

W †�W =

0

B@
0 U †MV

V †M †U 0

1

CA =

0

B@
0 µ

µ 0

1

CA =

0

BBBBBBB@

0 0 µ1�0 0

0 0 0 µ2�0

µ1�0 0 0 0

0 µ2�0 0 0

1

CCCCCCCA

(3.46)

Note that this transformation leaves the ↵i unchanged: W †↵iW = ↵i. We now

introduce a second unitary transformation,

Y =

0

BBBBBBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

CCCCCCCA

. (3.47)

This transformation exchanges a left-handed representation for a right-handed one in

the ↵i:

↵̃i = Y †↵iY

=

0

BBBBBBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

CCCCCCCA

0

BBBBBBB@

�i 0 0 0

0 0 �i 0

0 ��i 0 0

0 0 0 ��i

1

CCCCCCCA

=

0

BBBBBBB@

�i 0 0 0

0 ��i 0 0

0 0 �i 0

0 0 0 ��i

1

CCCCCCCA
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and rearranges the non-zero entries of the mass matrix:

�̃ = Y †�Y

=

0

BBBBBBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

CCCCCCCA

0

BBBBBBB@

0 µ1 0 0

0 0 0 µ2

µ1 0 0 0

0 0 µ2 0

1

CCCCCCCA

=

0

BBBBBBB@

0 µ1 0 0

µ1 0 0 0

0 0 0 µ2

0 0 µ2 0

1

CCCCCCCA

So the action of the transformed Hamiltonian H = �i↵̃ · r + �̃m on a quartet

eigenstate

0

BBBBBBBB@

2

64
� ·r µ1

µ1 �� ·r

3

75
0 0

0 0

0 0

0 0

2

64
� ·r µ2

µ2 �� ·r

3

75

1

CCCCCCCCA

0

BBBBBBB@

 L1

 R1

 L2

 R2

1

CCCCCCCA

= �
@

@t

0

BBBBBBB@

 L1

 R1

 L2

 R2

1

CCCCCCCA

(3.48)

Where we have inserted brackets to highlight the partitioning into two independent

fermions: the upper left corner of the transformed ↵ and � match up to describe one

Dirac fermion of mass µ1 and the lower right corners match up to form a second Dirac

fermion of mass µ2. We leave it as an exercise to show that the wave function ansatz,

0

BBBBBBB@

 L1

 L2

 R1

 R2

1

CCCCCCCA

(3.49)
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decouples under the two transformations as

Y † �W † 
�
⇠

0

BBBBBBB@

 L1

 R1

 L2

 R2

1

CCCCCCCA

. (3.50)

A similar procedure can be applied to , for example, 12-d and higher representa-

tions; thus there are no more ‘fundamental’ particles contained in higher dimen-

sional representations of the Dirac algebra– only concatenations of independent 4-d

fermions. However, while the Dirac quartet does not describe a new type of fun-

damental fermion, it can be thought of as a toy model for 2 generations of Dirac

neutrinos.

3.2 PT Dirac Equation

We now turn to the construction of the non-Hermitian Dirac equation. Ordinary

Hermitian quantum mechanics and quantum field theory successfully describe the

behavior of elementary particles –will the repercussions of having relaxed Hermiticity

propagate through the theory and result in a di↵erent behavior for fermions? If

so then we could use the precision with which the Hermitian theory is known to

constrain any deviations therefrom. This was our original motivation in constructing

the PT analogue of the Dirac equation. As we will now demonstrate, the fundamental

representation of the Dirac equation is not exclusive to Hermitian quantum mechanics.

Constructing the analogous 4-d representation using the principles of PT quantum

mechanics one obtains exactly the same theory as the Dirac equation we all know

and love. That the Dirac equation emerges from the generalization to PT quantum

mechanics completely intact is a remarkable finding, as it suggests there is nothing
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special about Hermitian quantum mechanics and that the assumption of Hermiticity

is rather arbitrary. A carefully constructed theory that guarantees real eigenvalues,

unitary time evolution, and the other criteria discussed in Chapter 1 is su�cient to

give the famous Dirac equation. Furthermore, parity and time-reversal symmetry

are physically motivated and eventually enforced even in a Hermitian theory. PT

quantum mechanics gives these principles, rather than convenient linear algebraic

properties, a prominent role in the development of the theory. And in the case of

Dirac fermions, this comes at no expense to known experimental results.

3.2.1 Construction and Conditions

The construction of the PT Dirac equation proceeds from a few simple assumptions.

We keep the Hamiltonian as eq (3.2) but now allow the ↵i and � matrices to be

non-Hermitian. We keep the action of time reversal and parity the same as they are

in ordinary fermionic theory, namely T 2 = �1, P 2 = 1, and

P (r) = S (�r) (3.51)

T (r) = Z ⇤(r)

where S is a 2m⇥2m matrix that exchanges the left and right handed components of

the 2m-dimensional wave function, and Z = i�yIm⇥m . Many matrices satisfy these

general conditions, but rather than choose specific representations at the onset, we

keep the forms of ↵, �, S and Z open and allow the principles of special relativity

and PT quantum mechanics to fix these matrices.

Determining the specific form of these matrices is tedious and not very enlighten-

ing, however it is an extremely important step in the construction of the PT Dirac

theory. By letting the principles of special relativity and Lorentz invariance guide us
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to the correct representations for these matrices, we are not so much choosing what

the PT Dirac equation is as we are letting Nature tell us what fermionic Dirac theory

would be like in a world where said principles are still upheld, but the assumption of

Hermiticity is not. As we will show in this chapter, these conditions are constraining

enough so as to keep the non-Hermitian 4-d representation precisely the same as the

fundamental representation in Hermitian theory, but are liberal enough so that the

higher dimensional representations (specifically, the 8-d representation) allow new

physics to creep through.

Conditions

In this section we first enumerate the conditions and then derive them.

(i) ↵ and � are assumed to obey the Dirac algebra eq (3.3) to

ensure relativistic dispersion. From the ↵’s we construct the

boost and rotation generators according to eq (3.26).

(ii) For parity and time reversal to be compatible with the boosts

and rotations we need Z↵⇤
i = �↵iZ and {S,↵i = 0}.

(iii) We assume P and T commute, leading to ZZ⇤ = �1, S2 = 1

and SZ = ZS⇤ respectively.

(iv) We assume the Hamiltonian commutes with the combined

operation PT , leading to ↵iSZ = SZ↵⇤
i and �SZ = SZ�⇤.

(v) We impose self-duality, to ensure that the eigenvectors of HD

will be orthogonal under the PT inner product, as explained

in detail in the previous chapter. This amounts to imposing

↵i = ZT↵T
i Z

† and � = �ZT�TZ†.
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(vi) We require that HD have unbroken PT symmetry, which is

essentially the same as requiring that the energy eigenvalues

be real, as explained in the previous chapter.

In the derivation of these condition we will assume a 4-d representation for illus-

tration purposes. The generalization to representations of di↵erent dimensionality is

trivial.

Condition (i)

{↵i,↵j} = 2�ij, {↵i, �} = 0 and Kx = i
2↵x, Jx = �

i
2↵y↵z, etc.

It was Dirac’s remarkable discovery that the matrices that make up the kinematic

part of the Dirac Hamiltonian ↵x,↵y,↵z can also play the role of generators of boosts

and rotations, and in doing so, they form a representation of the Lorentz algebra.

More specifically, we assume

{↵i,↵j} = 2�ij. (3.52)

If we assign

Kx !
i

2
↵x Ky !

i

2
↵y Kz !

i

2
↵z (3.53)

and

Jx ! �
i

2
↵y↵z Jy ! �

i

2
↵z↵x Jz ! �

i

2
↵x↵y. (3.54)

as the generators of boosts and rotations, they obey the Lorentz algebra:

[Jx, Jy] = iJz, [Kx, Ky] = 0, [Kx, Jz] = �iKy

[Kx, Ky] = �iJz, [Kx, Jy] = iKz, ... etc. (3.55)
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Given the generators, we construct boosts and rotations in the standard way, for

example a boost along the x-axis is given by

⇤x(⇣) = exp(�iKx⇣) = exp

✓
1

2
↵x⇣

◆
= cosh

⇣

2
+ ↵x sinh

⇣

2
. (3.56)

Explicit evaluation of the exponential is facilitated by use of the anti-commutation

relation ↵2
x = 1. Similarly a rotation about the z-axis may be written as

Rz(✓) = exp(�iJz✓) = exp


�i

1

2
✓(�i↵x↵y)

�
= cos

✓

2
� ↵x↵y sin

✓

2
; (3.57)

here, the equality is facilitated by use of (�i↵x↵y)2 = 1 which follows from the anti-

commutation relations eq (3.52).

Armed with expressions for boosts and rotations in terms of the ↵i let us in-

vestigate how they transform under parity and time-reversal. Under parity space

co-ordinates are inverted but the time is left unchanged :

0

BBBBBBB@

t0

x0

y0

z0

1

CCCCCCCA

= P

0

BBBBBBB@

t

x

y

z

1

CCCCCCCA

where P =

2

66666664

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3

77777775

. (3.58)

It is easy to verify that

P⇤x(⇣)P = ⇤x(�⇣),

PRz(✓)P = Rz(✓). (3.59)
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Obviously, similar relations hold for boosts along other directions or rotations about

other axes. In terms of the generators eq (3.59) may be written as

PKxP = �Kx

PJzP = Jz. (3.60)

Evidently similar relations must hold for other boost and rotation generators.

Under time-reversal, t ! �t but the spatial co-ordinates are unchanged:

0

BBBBBBB@

t0

x0

y0

z0

1

CCCCCCCA

= T

0

BBBBBBB@

t

x

y

z

1

CCCCCCCA

where T =

2

66666664

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

. (3.61)

It is easy to verify that

T�1⇤x(⇣)T = ⇤x(�⇣)

T�1Rz(✓)T = Rz(✓); (3.62)

Similar relations hold for boosts along other directions and rotations about other axes.
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Condition (ii)

{S,↵i} = 0 and Z↵⇤
i = �↵iZ

This condition constrains the ↵i so that they are compatible with boosts and

rotations. Note that the action of P and T on a spinor plane wave is given by

Pu exp(ik · r) = Su exp(�ik · r),

Tu exp(ik · r) = Zu⇤ exp(�ik · r). (3.63)

Since parity is a linear operator and all spinor wave functions can be written as a

superposition of plane waves, eq (3.63) fully defines the parity operator.

To derive the condition on S and ↵i, recall that according to eq (3.60) parity and

boost generators satisfy the relation PKxP = �Kx. By applying both sides of this

expression to a spinor plane wave, making use of eq (3.63) and the correspondence eq

(3.56), we obtain S↵xS = �↵x. Using S2 = 1, we find S↵x = �↵xS or {S,↵x} = 0.

The x direction was chosen arbitrarily and the same analysis would hold for y and z,

so we conclude {S,↵i} = 0. According to eq (3.60), parity and rotation generators

satisfy the relation PJzP = Jz. By a similar analysis of this relation we conclude

that S and ↵ must obey the consistency condition

[S,↵x↵y] = 0 (3.64)

and permutations thereof. However this is not an independent condition. Eq (3.64)

follows as a consequence of {S,↵i} = 0 by use of the identity [A,BC] = {A,B}C �

B{A,C}. Turning now to the constraint between Z and ↵i. T is anti-linear (T =

Z ⇤) and odd (T 2 = �1), which implies Z⇤ = �Z�1. So T�1 = �Z ⇤. Recall that
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T�1⇤x(⇣)T = ⇤(�⇣), and using eq(3.56), we obtain

�Z↵⇤
xZ

⇤ = �↵x (3.65)

Z↵⇤
x = �↵xZ

The same analysis would hold for boosts along the y and z directions, so we conclude

Z↵⇤
i = �↵iZ.

Condition iii

S2 = 1

ZZ⇤ = �1

SZ = ZS⇤

Time reversal is odd and P 2 = 1 so eq (3.63) immediately leads to S2 = 1 and

ZZ⇤ = �1. We may sometimes find it convenient to express this latter condition as

ZTZ† = �1. Finally, since we impose that [P, T ] = 0, it follows from eq (3.63) that

SZ = ZS⇤, which we may also write as ZTST = S†ZT .

Condition (iv)

↵iSZ = SZ↵⇤
i

�SZ = SZ�⇤

These conditions follow immediately from [H,PT ] = 0 and the action of P and T

on a plane wave eq (3.63) .

Condition (v)

↵iSZ = SZ↵⇤
i

�SZ = SZ�⇤
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In Chapter 1 we define the PT inner product for finite dimensional vector spaces

as

(�, )PT ⌘ �(PT�)TZ† ,

= �(SZ�⇤)TZ† ,

= ��†ZTSTZ† . (3.66)

From (3.63) we see the combined operation of PT on a plane wave is

PTu exp(ik · r) = SZu⇤ exp(ik · r). (3.67)

The PT inner product of two plane waves is given by a natural generalization of eq

(3.66),

(u exp ik · r, v exp ip · r)PT = �

Z
dr u†ZTSTZ†v exp ik · r exp ip · r,

= �(2⇡)3�(k+ p)u†ZTSTZ†v. (3.68)

Now ZTSTZ† = S†ZTZ† = �S† because ZTST = S†ZT and ZTZ† = �1.

Hence we obtain the final simplified expression for the PT inner product of plane-

waves in a relativistic quantum theory:

(u exp ik · r, v exp ip · r)PT = (2⇡)3�(k+ p)u†S†v. (3.69)

As described in Chapter 1, self-duality is the condition that

(Hu exp ik · r, v exp ip · r)PT = (u exp ik · r, Hv exp ip · r)PT (3.70)
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Making use of eqs (3.2) and (3.69) it is easy to show that

S↵i = �↵iS
†,

S� = �†S. (3.71)

Combining this with [H,PT ] = 0 gives

� = �ZT�TZ†,

↵i = ZT↵T
i Z

†. (3.72)

This form is more convenient for our purpose than eq (3.71).

Condition (vi)

Condition (vi) is simply that H and PT have unbroken symmetry, which is described

in Chapter 1. This condition essentially guarantees that the eigenvalues of H are real

and does not place any additional constraints on S, Z, ↵i, or �.

This concludes the derivation of the conditions that must be met by the PT Dirac

theory in order to be consistent with special relativity and PT quantum mechan-

ics. We note that conditions (i-iii) are also imposed in ordinary Dirac theory, and

conditions (iv-vi) here substitute for Hermiticity.

3.3 Model 4

Now we are equipped to construct the analogue of the fundamental (4-d) representa-

tion of the Dirac equation in the framework of PT quantum mechanics. We call this

theory ‘Model 4’. Recall from section 3.1.1 that any set of 2⇥ 2 matrices that satisfy

{↵i,↵j} = 2�ij has to be of the form V �iV �1 or �W�iW�1 where V and W are
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invertible 2⇥ 2 matrices3 In constructing Model 4 we begin by taking the ↵ matrices

to be the direct sum of these two possibilities:

↵i =

2

64
V �iV �1 0

0 �W�iW�1

3

75 . (3.73)

Next we turn to the choice of Z. There are three conditions that relate ↵ and Z,

conditions (ii), (iv), and (v); we will use these conditions and the above ansatz for ↵

to specify Z. Let’s assume Z is of the form

Z =

0

B@
A B

C D

1

CA , (3.74)

where A,B,C and D are 2 ⇥ 2 matrices. Imposing condition (ii) we find upon mul-

tiplying matrices that these 2⇥ 2 matrices must satisfy the following relations

V �1AV ⇤�⇤
i = ��iV

�1AV ⇤,

W�1DW ⇤�⇤
i = ��iW

�1DW ⇤,

V �1BW ⇤�⇤
i = �iV

�1DW ⇤,

W�1CV ⇤�⇤
i = �iW

�1CV ⇤.

(3.75)

3If the matrices are Hermitian then V and W are unitary matrices, ie any 2 ⇥ 2 Hermitian
representation of the Dirac algebra is unitarily equivalent to either the left handed or right handed
Weyl representation.
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Recall from section 3.1.1

M�⇤
i = ��iM ) M = be2 where b 2 C (3.76)

M�⇤
i = �iM ) M = 0.

Thus condition (ii) leads to the conclusion that A = V ae2V �1⇤, D = Wde2W�1⇤

where a and d are undetermined complex numbers, and B = C = 0 . In other words

Z =

0

B@
V ae2V �1⇤ 0

0 Wde2W�1⇤

1

CA . (3.77)

Next we impose condition (iv) that ZZ⇤ = �1 using the form of Z above. This

leads immediately to |a|2 = |d|2 = 1, so we can write a and d as

a = exp i�a, d = exp i�d. (3.78)

Finally we impose condition (v) that ↵i = ZT↵T
i Z

†. Using eT2 = �e2 and

e2�T
i e2 = �i, we can write

V †V �i = �iV
†V,

W †W�i = �iW
†W. (3.79)

From section 3.1.1 we know that if a matrix commutes with all three Pauli matrices

then it must be diagonal, so V †V must be diagonal. One can also argue that V †V

must have positive real eigenvalues, thus the diagonal entries of V must be positive.

Hence we conclude

V †V = v2�0, W †W = w2�0 (3.80)
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where v and w are positive real numbers. This implies that

V �1 =
1

v2
V †, W�1 =

1

w2
W †. (3.81)

and moreover that
1

v
V and

1

w
W (3.82)

are unitary matrices.

In conclusion, after imposition of the three conditions that interelate Z and ↵ we

find that these matrices have the form

↵i =

0

B@
v�1V �iv�1V † 0

0 �w�1W�iw�1W †

1

CA (3.83)

and

Z =

0

B@
v�1V exp i�ae2v�1V T 0

0 w�1W exp i�de2w�1W T

1

CA (3.84)

These results can be summarized more elegantly by defining

U =

0

B@
v�1V exp i�a

2 0

0 w�1W exp i�d

2

1

CA . (3.85)

Evidently U is unitary and we may write

↵i = U

0

B@
�i 0

0 ��i

1

CAU † (3.86)

and

Z = U

0

B@
e2 0

0 e2

1

CAUT . (3.87)
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It follows from this representation that ↵i are Hermitian, ↵i = ↵†
i . Unlike Dirac,

however, we did not explicitly impose this Hermiticity, it emerged as a consequence

of the conditions of PT quantum mechanics. This already suggests that Model 4 will

be equivalent to the fundamental Dirac fermion, but so far we have only looked at

the conditions which relate Z and ↵i. Now we turn to the specification of S.

There are three conditions that relate ↵i and S, namely, conditions (ii), (iii) and

(iv). Motivated by the form of ↵i and Z, eqs (3.86) and (3.87) we write S in the form

S = USU † and rewrite conditions (d)-(g) in terms of S. Condition (ii) simplifies to

S

0

B@
�i 0

0 ��i

1

CA+

0

B@
�i 0

0 ��i

1

CA S = 0. (3.88)

Similarly condition (iii) simplifies to

S2 = 1 (3.89)

and

S

0

B@
e2 0

0 e2

1

CA =

0

B@
e2 0

0 e2

1

CA S⇤. (3.90)

Finally condition (iv) becomes

S

0

B@
e2 0

0 e2

1

CA

0

B@
�⇤
i 0

0 ��⇤
i

1

CA =

0

B@
�i 0

0 ��i

1

CA S

0

B@
e2 0

0 e2

1

CA . (3.91)

Making use of e22 = ��0 and e2�⇤
i e2 = �i we can show that eq (3.91), is identical to

eq (3.88), so the task now is to determine S by enforcing eqs (3.88), (3.89) and (3.90).

To this end we write

S =

0

B@
a b

c d

1

CA (3.92)
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where a, b, c and d are arbitrary 2⇥2 matrices. Equation (3.88) leads to the conclusion

that {a, �i} = {d, �i} = 0 while [b, �i] = [c, �i] = 0. Since there is no 2⇥2 matrix that

anti-commutes with all three Pauli matrices, we must have a = d = 0. And a matrix

that commutes with all three Pauli matrices must be proportional to the identity, so

condition (ii) implies that the parity matrix has the form

S =

0

B@
0 b0�0

c0�0 0

1

CA (3.93)

where b0 and c0 are arbitrary complex numbers. Next we substitute the form eq (3.93)

into condition (iii). This leads to the conclusion that b0c0 = 1. Finally we substitute

the form eq (3.93) into condition (iii), which forces b0 = b⇤0 and c0 = c⇤0.

So it finally emerges that S has the form

S =

0

B@
0 b0�0

b�1
0 �0 0

1

CA (3.94)

where b0 is a non-zero real number, and the parity matrix S is given by S = USU †.

Now we must determine the mass matrix for Model 4. Here, the conditions that

guide us are (i), (iv), and (v). Again motivated by the form of ↵, Z and S for Model

4 we posit that

� = UBU †. (3.95)

In terms of this ansatz condition (i) simplifies to

0

B@
�i 0

0 ��i

1

CAB +B

0

B@
�i 0

0 ��i

1

CA = 0. (3.96)
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Condition (i) simplifies to

S

0

B@
e2 0

0 e2

1

CAB⇤ = BS

0

B@
e2 0

0 e2

1

CA . (3.97)

Finally condition (v) simplifies to

B = �

0

B@
e2 0

0 e2

1

CABT

0

B@
e2 0

0 e2

1

CA . (3.98)

By the same reasoning that applied to condition (i) for the case of parity and the

matrix S, we see that condition (i) constrains B to have the form

B =

0

B@
0 m1�0

m2�0 0

1

CA (3.99)

where m1 and m2 are arbitrary complex numbers. Condition (ii) then implies that

m1 = m2 ⌘ m, and forces

b0m
⇤ =

1

b0
m and b0m =

1

b0
m⇤. (3.100)

We have already shown b0 is real, so these equations have two possible solutions:

either m = 0 and b0 is arbitrary, or m is non-zero and real and b0 = ±1. The latter

corresponds to the massive Model 4; the former to the massless. In this chapter we

shall only concentrate on the massive case.

Now we have completely specified the ↵i, �, S and Z matrices; we summarize them

here for convenience:
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↵i = U

0

B@
�i 0

0 ��i

1

CAU †

Z = U

0

B@
e2 0

0 e2

1

CAUT

S = U

0

B@
0 ±�0

±�0 0

1

CAU †

� = U

0

B@
0 m�0

m�0 0

1

CAU † (3.101)

where m is a real parameter (the mass parameter) and U is the unitary matrix

specified in eq (3.85).

Comparing these matrices to the ones that correspond to the fundamental Her-

mitan Dirac equation in section 3.1.2, we see that the matrices that comprise the

Hamiltonian eq (3.2) are identical, so the Hamiltonians themselves are identical. Thus

Model 4 emerges as equivalent in every regard to the fundamental representation of

the Dirac equation, though not by design– simply by enforcing the Dirac algebra and

principles of PT quantum mechanics.

3.4 Model 8

In section 3.1.3 we saw that higher dimensional representations of the Hermitian

Dirac equation can be decoupled into independent fermions, by means of singular

value decomposition. Given that Model 4, the PT analogue of the fundamental Dirac

fermion, is completely equivalent to the Hermitian case, one might naturally expect

that higher dimensional representations of the PT Dirac equation are equivalent to
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higher dimensional representations of the Hermitian Dirac equation and will similarly

decouple. We show in this section that is not the case. It is an extremely interesting

property of Todd non-Hermitian quantum mechanics that a new type of particle is

described by the higher dimensional representation; the only other time4 a particle

was discovered by means of solving the Dirac equation was over 80 years ago when

the great man himself proposed the existence of anti-matter.

3.4.1 Construction

By similar process to Model 4 , we successively apply the conditions (i-vi) to obtain

the form of ↵i, �, S and Z matrices in the 8-d case. The steps taken are very similar

to those used in constructing Model 4, so we will not present them in detail here, but

rather refer the reader to the previous section from whence the derivations of the 8-d

case can be extrapolated. We choose ↵i to be the direct sum of a pair of left-handed

and a pair of right-handed non-Hermitian representations:

↵i !

2

66666664

V �iV �1 0 0 0

0 V �iV �1 0 0

0 0 �W�iW�1 0

0 0 0 �W�iW�1

3

77777775

. (3.102)

But application of conditions (ii)-(v) leaves us with a model in which ↵ has the form

↵i !

2

66666664

�i 0 0 0

0 �i 0 0

0 0 ��i 0

0 0 0 ��i

3

77777775

(3.103)

4Shortly after the Dirac equation was set forth, Majorana discovered that it allowed another type
of particle, now called a Majorana fermion. But there has not been a definitive observation of a
particle of this type.
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which is identical to the ↵i for the Dirac quartet ( eq (3.39) ). However the mass

matrix � for Model 8 has the general form

� =

0

B@
0 M

M⇤ 0

1

CA where M =

2

64
(m0 +m3)�0 (m1 � im2)�0

(m1 + im2)�0 (m0 �m3)�0

3

75 (3.104)

which is very di↵erent from the Dirac quartet model (cf eq (3.40)). This mass matrix

is non-Hermitian:

� =

0

BBBBBBB@

0 0 (m0 +m3)�0 (m1 � im2)�0

0 0 (m1 + im2)�0 (m0 �m3)�0

(m0 +m3)�0 (m1 + im2)�0 0 0

(m1 � im2)�0 (m0 �m3)�0 0 0

1

CCCCCCCA

. (3.105)

Only in the case m2 = 0 does this � reduce to a special case of eq(3.40). Needless

to say, non-Hermitian mass matrices are not allowed within Hermitian quantum me-

chanics. It is this (arguably) slight di↵erence between the Dirac quartet mass matrix

and the Model 8 mass matrix:

�Dirac =

0

B@
0 M

M † 0

1

CA vs. �Model8 =

0

B@
0 M

M⇤ 0

1

CA (3.106)

that is solely responsible for the new physics contained in Model 8.

In order to explore this new physics we must determine the S and Z matrices

that specify the action of the P and T operators, and determine a valid CPT inner
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product . Through conditions (i-vi) we also determine the S and Z operators; we find

S =

0

BBBBBBB@

0 0 �0 0

0 0 0 �0

�0 0 0 0

0 �0 0 0

1

CCCCCCCA

, and Z =

0

BBBBBBB@

i�y 0 0 0

0 i�y 0 0

0 0 i�y 0

0 0 0 i�y

1

CCCCCCCA

. (3.107)

Parenthetically we note these expressions reveal another remarkable qualitative fea-

ture of Model 8, namely that the Hamiltonian fails to commute with both P and T

although by design it does commute with the combined symmetry PT . Thus Model

8 breaks parity and time reversal even at the non-interacting level5.

The first step in exploring the new physics contained in Model 8 is to solve the

Hamiltonian eq(3.2) using the representations (3.103) and (3.105); we refer to the

Hamiltonian so represented as H8. We attempt plane wave solutions of the form

 = u exp(ip · r) (3.108)

where u is a fixed spinor. Substitution of the ansatz eq (3.108) into the eigenvalue

equation H8 = E reduces it to an 8⇥ 8 matrix eigenvalue equation,

0

BBBBBBB@

� · p 0 (m0 +m3)�0 (m1 � im2)�0

0 � · p (m1 + im2)�0 (m0 �m3)�0

(m0 +m3)�0 (m1 + im2)�0 �� · p 0

(m1 � im2)�0 (m0 �m3)�0 0 �� · p

1

CCCCCCCA

u = Eu. (3.109)

5One might wish to define a di↵erent parity operator setting S = �/me↵ for the restricted Model
8. This parity operator does exchange left and right handed components and it also commutes
with the Hamiltonian. However this parity operator is not an observable because it is not CPT
self-adjoint. This criterion for observability is discussed later in the text.
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To further simplify the problem we attempt solutions of the form

u =

0

BBBBBBB@

a ⇠+(n̂)

b ⇠+(n̂)

c ⇠+(n̂)

d ⇠+(n̂)

1

CCCCCCCA

or u =

0

BBBBBBB@

a ⇠�(n̂)

b ⇠�(n̂)

c ⇠�(n̂)

d ⇠�(n̂)

1

CCCCCCCA

. (3.110)

Here n̂ is the unit vector along p. Thus p = pn̂ where p is the magnitude of p and

n̂x = sin ✓ cos'

n̂y = sin ✓ sin'

n̂z = cos ✓. (3.111)

We denote the eigenspinors of � · n̂ as ⇠±(n̂), given by

⇠+(n̂) =

0

B@
cos ✓/2

exp(i') sin ✓/2

1

CA ⇠�(n̂) =

0

B@
� exp(�i') sin ✓/2

cos ✓/2

1

CA . (3.112)

For brevity, we will write the ansätze, eq (3.110) as

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

⌦ ⇠+(n̂) or

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

⌦ ⇠�(n̂). (3.113)

Substituting eq (3.110) into eq (3.109) reduces it to 4⇥4 matrix eigenvalue equations;
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namely,

0

BBBBBBB@

p 0 m0 +m3 m1 � im2

0 p m1 + im2 m0 �m3

m0 +m3 m1 + im2 �p 0

m1 � im2 m0 �m3 0 �p

1

CCCCCCCA

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

= E

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

, (3.114)

for the positive helicity case and

0

BBBBBBB@

�p 0 m0 +m3 m1 � im2

0 �p m1 + im2 m0 �m3

m0 +m3 m1 + im2 p 0

m1 � im2 m0 �m3 0 p

1

CCCCCCCA

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

= E

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

, (3.115)

for the negative helicity case.

For simplicity we now set m1 = m3 = 0; (from now on we will refer to this

restricted case as ‘Model 8’ even though the full Model 8 is more general). It is

convenient to define the 2⇥ 2 matrix

M =

0

B@
m0 �im2

im2 m0

1

CA (3.116)

and to define the two-component column vectors

⇣+ =
1
p
2

0

B@
1

i

1

CA , ⇣� =
1
p
2

0

B@
1

�i

1

CA . (3.117)

The reader may recognize ⇣± as eigenvectors of �2 with eigenvalue ±1 respectively.
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As a result one can see

M⇣+ = (m0 +m2)⇣+, M⇣� = (m0 �m2)⇣�

M⇤⇣+ = (m0 �m2)⇣+, M⇤⇣� = (m0 +m2)⇣� (3.118)

We now attempt solutions to eqs (3.114) and (3.115) that are of the form

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

=

0

B@
↵ ⇣+

� ⇣+

1

CA or

0

BBBBBBB@

a

b

c

d

1

CCCCCCCA

=

0

B@
↵ ⇣�

� ⇣�

1

CA . (3.119)

For brevity we will write eq (3.119) in the more compact notation

0

B@
↵

�

1

CA⌦ ⇣+ or

0

B@
↵

�

1

CA⌦ ⇣�. (3.120)

These ansätze conveniently reduce the 4⇥ 4 matrix equations to 2⇥ 2 equations. For

example if we substitute the ⇣+ ansatz into the positive helicity eq (3.114), we obtain

the 2⇥ 2 eigenvalue problem

0

B@
p m0 +m2

m0 �m2 �p

1

CA

0

B@
↵

�

1

CA = E

0

B@
↵

�

1

CA . (3.121)

Proceeding in this way our set of four ansätze,

0

B@
↵

�

1

CA⌦ ⇣± ⌦ ⇠±(n̂), reduce solution

of the 8 ⇥ 8 matrix eigenvalue problem, eq (3.109), to a set of four 2 ⇥ 2 matrix
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eigenvalue problems summarized below:

Ansatz Eigenproblem

u =

0

B@
↵

�

1

CA⌦ ⇣+ ⌦ ⇠+(n̂) )

0

B@
p m0 +m2

m0 �m2 �p

1

CA

0

B@
↵

�

1

CA = E

0

B@
↵

�

1

CA

u =

0

B@
↵

�

1

CA⌦ ⇣� ⌦ ⇠+(n̂) )

0

B@
p m0 �m2

m0 +m2 �p

1

CA

0

B@
↵

�

1

CA = E

0

B@
↵

�

1

CA

u =

0

B@
↵

�

1

CA⌦ ⇣+ ⌦ ⇠�(n̂) )

0

B@
�p m0 +m2

m0 �m2 p

1

CA

0

B@
↵

�

1

CA = E

0

B@
↵

�

1

CA

u =

0

B@
↵

�

1

CA⌦ ⇣� ⌦ ⇠�(n̂) )

0

B@
�p m0 �m2

m0 +m2 p

1

CA

0

B@
↵

�

1

CA = E

0

B@
↵

�

1

CA

(3.122)

Note that the 2⇥ 2 matrices are all manifestly non-Hermitian.

Let us now solve the eigenvalue eq (3.121). Let us denote the matrix in that

equation as H1. Evidently H1 is traceless and has determinant �p2�m2
0+m2

2. Right

away, this tells us that the eigenvalues are ±" where

" =
q

p2 +m2
0 �m2

2. (3.123)

To determine the eigenvectors it is convenient to first introduce the parameters
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0  ↵  ⇡ and �1 < � < 1 in terms of which

p = " cos↵

m0 = " sin↵ cosh �

m2 = " sin↵ sinh �

(3.124)

In terms of this parametrization we may write

H1 =

0

B@
p m0 +m2

m0 �m2 �p

1

CA ! "

0

B@
cos↵ sin↵ exp �

sin↵ exp(��) � cos↵

1

CA ⌘ "h1.

(3.125)

Evidently the matrix h1 has eigenvalues±1; hence its eigenvectors may be constructed

by the projection operator method. Let us denote the eigenvectors ⌘1±.

We define the projectors

P1+ =
1

2
(1 + h1) =

0

B@
1 + cos↵ sin↵ exp �

sin↵ exp(��) 1� cos↵

1

CA

P1� =
1

2
(1� h1) =

0

B@
1� cos↵ � sin↵ exp �

� sin↵ exp(��) 1 + cos↵

1

CA . (3.126)

In exactly the same way as we constructed the eigenspinors of � · n̂, we now find the

eigenvectors of h1 to be

⌘1+ =

0

B@
cos(↵/2) exp(�/2)

sin(↵/2) exp(��/2)

1

CA ⌘1� =

0

B@
� sin(↵/2) exp(�/2)

cos↵/2 exp(��/2)

1

CA . (3.127)

Proceeding in this way we can construct the eigenvectors of all four eqs (3.122).
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The eigenstates of the restricted Model 8 are of the form  = u exp(ip · r). For a

given wave-vector p there are four positive energy solutions and four negative energy.

The energy is given by ±" where " = (p2+m2
0�m2

2)
1/2. We denote the positive energy

eigenspinors u1(p), u2(p), u3(p) and u4(p); we denote negative energy eigen-spinors

v1(p), v2(p), v3(p) and v4(p). The eigenspinors u1(p) and v1(p) have the form

u1 = ⌘1,pos ⌦ ⇣+ ⌦ ⇠+(n̂) v1 = ⌘1,neg ⌦ ⇣+ ⌦ ⇠+(n̂)

⌘1,pos =

2

64
cos(↵/2) exp(�/2)

sin(↵/2) exp(��/2)

3

75 ⌘1,neg =

2

64
� sin(↵/2) exp(�/2)

cos(↵/2) exp(��/2)

3

75 .

(3.128)

The eigenspinors u2(p) and v2(p) have the form

u2 = ⌘2,pos ⌦ ⇣� ⌦ ⇠+(n̂) v2 = ⌘2,neg ⌦ ⇣� ⌦ ⇠+(n̂)

⌘2,pos =

2

64
cos(↵/2) exp(�/2)

sin(↵/2) exp(��/2)

3

75 ⌘2,neg =

2

64
� sin(↵/2) exp(�/2)

cos(↵/2) exp(��/2)

3

75 .

(3.129)

The eigenspinors u3(p) and v3(p) have the form

u3 = ⌘3,pos ⌦ ⇣+ ⌦ ⇠�(n̂) v3 = ⌘3,neg ⌦ ⇣+ ⌦ ⇠�(n̂)

⌘3,pos =

2

64
sin(↵/2) exp(�/2)

cos(↵/2) exp(��/2)

3

75 ⌘3,neg =

2

64
cos(↵/2) exp(�/2)

� sin(↵/2) exp(��/2)

3

75 .

(3.130)
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The eigenspinors u4(p) and v4(p) have the form

u4 = ⌘4,pos ⌦ ⇣� ⌦ ⇠�(n̂) v4 = ⌘4,neg ⌦ ⇣� ⌦ ⇠�(n̂)

⌘4,pos =

2

64
sin(↵/2) exp(��/2)

cos(↵/2) exp(�/2)

3

75 ⌘4,neg =

2

64
cos(↵/2) exp(��/2)

� sin(↵/2) exp(�/2)

3

75 .

(3.131)

The parameters ↵ and � are defined in eq (3.124), the spinors ⇣± are defined in eq

(3.117) and ⇠±(n̂) are defined by eq (3.112).

In short, we find that for a given momentum p there are four positive energy

eigenvectors and four with negative energy. The energy momentum dispersion is

E = ±

p
p2 +m2

e↵ corresponding to a relativistic particle of mass me↵ =
p
m2

0 �m2
2.

For the energy eigenvalues to be real we need to impose m2
0 � m2

2. This leads

right away to a remarkable phenomenon that is impossible in conventional Hermitian

quantum mechanics: me↵ = 0 when m2
0 = m2

2, so Model 8 describes a particle with

an e↵ective mass of zero but a non-zero mass matrix.

At the very least, therefore, Model 8 corresponds to a new type of particle, not

allowed within the Standard Model. In Hermitian quantum mechanics and quantum

field theory, the only irreducible solutions to the Hamiltonian eq(3.2) are 4-component

Dirac fermions, and the only massless solutions are 2-component Weyl spinors. Model

8 is an irreducible 8-component wavefunction , that is massless in a particular regime.

Before going into the proof that Model 8 does not reduce to independent fermions

like the quartet, we comment on the possiblity that the particle described by Model

8 is not a new particle per se, but rather a new description of a particle that has been

known for over 50 years , the neutrino.

Prior to 1999 , the neutrino was thought to be a massless left-handedWeyl fermion.

Then flavor oscillations were observed and theorists were forced to come up with a
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di↵erent description. The simplest way to describe flavor oscillations was to assume

that the neutrino did in fact have a small but non-zero mass, thereby facilitating the

need for a right-handed Weyl fermion to which the left-handed one was coupled. If

we assume the mass matrix that couples the two species and the Hamiltonian6 cannot

be simultaneously diagonalized , this would give rise to oscillations (and hence a mass

di↵erence) between the two di↵erent neutrino species.

The Dirac quartet is a toy model of precisely this type of neutrino. Assume the

Hamiltonian [eqs (3.2), (3.39) and (3.40)] is written in an interaction basis so that the

first and third pair of components of the eight component wave function correspond

to the first generation neutrino and the second and fourth pair of components to the

second generation neutrino. In principle these two neutrino states are mixed by the

mass matrix leading to neutrino oscillations. However if both neutrino masses vanish

(µ1 = µ2 = 0), that corresponds to a vanishing mass matrix and hence no neutrino

oscillations. Indeed it is for this reason that the observation of neutrino oscillations

is generally considered evidence that neutrinos have mass [19], but it is important to

point out that experiments do not measure the bare mass of the neutrino. Nowadays

it is ubiquitously acknowledged and stated that neutrinos have mass, when the more

accurate statement is that neutrinos flavor oscillate.

Contrast this with two generations of neutrinos coupled by the mass matrix of

Model 8. In this case the mass matrix does not need to vanish even if the neu-

trino masses vanish (me↵ = 0 does not require m0 and m2 to vanish). Within the

conventional Dirac or Majorana framework the observation of neutrino oscillations

inexorably implies that neutrinos have mass. PT quantum mechanics clearly allows

for a quite distinct phenomenology for neutrino oscillations than conventional mod-

els. In order to determine whether PT quantum mechanics can describe a massless

neutrino that still allows flavor oscillations, much work needs to be done, specifically,

6The relevant Hamiltonian here would be the fully interacting electroweak portion of the Standard
Model Hamiltonian, not just H8.
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one must develop Model 8 as a fully interacting quantum field theory. This is the

topic of work in progress. However, even if the particle described by Model 8 is ruled

out by existing neutrino data, it is an extremely interesting new type of particle and

certainly worthy of further investigation.

3.4.2 CPT Inner Product

To complete the formulation of Model 8 as a PT quantum theory we must now specify

the dynamically determined CPT inner product. In this case, as in general, the PT

inner product, eq (??), is not satisfactory because it is not positive definite: although

( , )PT is real, its sign may be positive or negative and ( , )PT = 0 is possible

for non-trivial states  . In general the CPT inner product is constructed by taking

degenerate multiplets of the Hamiltonian and organizing them into states that are

mutually orthogonal under the PT inner product. For these special basis states the

CPT inner product is defined as the absolute value of their PT inner product. The

CPT inner product for other states can be determined by expanding in this special

basis and using the assumed bilinearity of the CPT inner product.

Before we immerse ourselves in a detailed analysis it is helpful to give the final

result which is simpler than its derivation. We find that

(ui(p) exp ip · r, uj(k) exp ik · r)CPT = vol�p,k�ij

(vi(p) exp ip · r, vj(k) exp ik · r)CPT = vol�p,k�ij

(ui(p) exp ip · r, vj(k) exp ik · r)CPT = 0. (3.132)

Here ui(p) exp ip · r and vi(p) exp ip · r (with i = 1, . . . , 4) denote the plane wave

positive and negative energy states of Model 8 with momentum p that were derived

in the previous section. Needless to say, if we simply computed the naive inner product

of these states (
R
dr  †(r)�(r)) we would not find that these Model 8 eigenstates are
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orthonormal.

Now we turn to the derivation of these results. We start by evaluating the PT

inner product of the Model 8 eigenstates. The PT inner product of a pair of plane

waves may be written as

(u exp ik · r, v exp ip · r)PT = vol �k+p,0 u
†Sv. (3.133)

The momentum constraint reveals that the PT inner product of each plane wave

eigenstate with itself is zero! We will find that positive energy states of momentum

k have non-zero PT inner product with states that have momentum �k by virtue of

the delta function in eq (3.133).

Following the notation of the preceding section we write the spinors u and v as

v = ⌘⌦⇣⌦⇠ and u = ⌘0⌦⇣ 0⌦⇠0. One can check that u†v = (⌘0†⌘)(⇣ 0†⇣)(⇠0†⇠). Similarly

from the form of S given in eq (2-106) one can check that Sv = (�x⌘)⌦ ⇣ ⌦ ⇠. Thus

u†Sv = (⌘0†�x⌘)(⇣ 0†⇣)(⇠0†⇠).

Armed with these results and the explicit forms of the eigenspinors computed in

the last section we may now calculate the spinor elements u†Sv where u is one of

the four spinors ui(�p) and v is one of the four spinors ui(p). We will find that

u1(�p) only overlaps with u3(p); u2(�p) only with u4(p); u3(�p) only with u1(p);

and u4(�p) only with u2(p). In particular for the first pair we find u†
1(�p)Su3(p) =

� exp(�i') where ' is the azimuthal angle corresponding to the momentum p.

This gives us license to define

 +
13p =

1
p
2

⇥
e�i'/2u1(�p) exp(�ip · r)� ei'/2u3(p) exp(ip · r)

⇤
.

 �
13p =

1
p
2

⇥
e�i'/2u1(�p) exp(�ip · r) + ei'/2u3(p) exp(ip · r)

⇤
.

(3.134)
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By design these states are mutually orthogonal under the PT inner product. Unlike

the plane wave eigenstates they are not self-orthogonal under the PT inner product.

Their inner products may be summarized as

( s
13p(r), 

s0

13p(r))PT = s�ss0 vol. (3.135)

Here s = + or � and s0 likewise. Having found a set of states that are PT orthogonal

we now define their CPT inner product as the norm of the PT inner product:

( s
13p(r), 

s0

13p(r))CPT = �ss0 vol. (3.136)

Next we may invert eq (3.134) to obtain

u1(�p) exp(�ip · r) =
1
p
2
ei'/2 +

13p(r) +
1
p
2
ei'/2 �

13r(r)

(3.137)

Making use of eq (3.136), (3.137) and the bilinearity of the CPT inner product we

obtain

{u1(�p) exp(�ip · r), u1(�p) exp(�ip · r)}CPT = vol

{u3(p) exp(ip · r), u3(p) exp(ip · r)}CPT = vol

{u1(�p) exp(�ip · r), u3(p) exp(ip · r)}CPT = 0

{u3(p) exp(ip · r), u1(�p) exp(�ip · r)]CPT = 0. (3.138)

The other pairs of states linked by the PT inner product [namely,

u2(�p) exp(�ip · r) and u4(p) exp(ip · r); u3(�p) exp(�ip · r) and

u1(p) exp(ip · r); and u4(�p) exp(�ip · r) and u2(p) exp(ip · r)] may be analyzed to

give results similar to eq (3.138). Combining these results and extending the analysis
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to negative energy states finally leads to the verification of eq (3.132).

Armed with the CPT inner product we can now determine the observables of

the theory. In PT quantum mechanics the operators corresponding to observables

must be CPT self-adjoint [4, 17]. The CPT adjoint of an operator A is defined as

the operator A? for which (A?�, )CPT = (�, A )CPT ; an operator is self-adjoint if

A = A?.

Now we would like to dispatch any concern that perhaps the restricted Model 8 is

merely an elaborate way to rewrite a trivial Hermitian model, namely a pair of 4⇥ 4

Dirac Hamiltonians, each of mass me↵ , assembled into an 8⇥ 8 block. Certainly such

a Dirac pair model also has an energy momentum dispersion E = ±

p
p2 +m2

e↵ with

four positive and four negative energy eigenfunctions for a given momentum that we

denote uDirac
i (p) exp(ip · r). From the correspondence between the eigenfunctions of

the Dirac pair model and the eigenfunctions of Model 8, ui(p) exp(ip · r), we can

indeed construct a transformation that maps the Model 8 Hamiltonian to the Dirac

pair Hamiltonian. That transformation maps Model 8 wave functions  8(r) to Dirac

pair wave functions  Dirac(r) via the convolution

 Dirac(r) =

Z
dr0 L(r� r0) 8(r

0). (3.139)

The kernel L has a range set by the non-hermiticity parameterm2; an explicit formula

will be given elsewhere [18]. That the transformation eq (3.139) is non-local shows

clearly that Model 8 and the Dirac pair model have di↵erent physics: if we coupled

them to the same gauge or scalar field we would get di↵erent outcomes. This argu-

ment, together with the broken parity and time-reversal symmetry and the prospect

of massless oscillations all clearly reveal the trans-Dirac character of Model 8.

We now construct Lorentz covariant bilinears to facilitate the study of interac-

tions. To this end we write the 8-component wave function as a column of four
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two-component spinors

 =

0

BBBBBBB@

⇠1

⇠2

⌘1

⌘2

1

CCCCCCCA

. (3.140)

From the form of ↵ for Model 8 we see that ⇠1 and ⇠2 transform like left handed

spinors under boosts and rotations and ⌘1 and ⌘2 like right-handed. Furthermore

parity exchanges ⇠1 with ⌘1 and ⇠2 with ⌘2. Thus, just as in Dirac theory, ⇠†i ⌘j and

⌘†i ⇠j are all scalars under boosts and rotations. Furthermore the symmetric combina-

tion ⇠†1⌘1+⌘
†
1⇠1 is a true scalar being invariant under parity whereas the antisymmetric

combination �i(⇠†1⌘1 + ⌘†1⇠1) is a pseudo-scalar as it changes sign under parity. Simi-

larly the currents (⇠†i ⇠j, ⇠
†
i�⇠j) and (⌘†i ⌘j,�⌘

†
i�⌘j) are four-vectors under boosts and

rotations. By making appropriate symmetric and anti-symmetric combinations we

can construct currents that are true vectors or axial vectors under parity. Interac-

tions can now be studied by Yukawa coupling the scalar bilinears to a scalar field or

the vector currents to a gauge field [18].

Finally we reformulate the restricted Model 8 as a quantum field theory. To this

end it is helpful to introduce a new notation for the eigenfunctions of Model 8. We

denote the eigenfunctions as ui (p) exp ip ·r where i = 1, . . . , 4 corresponds to positive

energy and i = 5, . . . , 8 to negative energy. Since the u’s are not eigenspinors of a

Hermitian matrix they are not orthonormal. It is convenient to introduce a set of

dual spinors ũi(p) that satisfy ũ†
i (p)uj(p) = �ij. These orthonormality conditions are

su�cient to specify the ũ’s but we also note that they are eigenfunctions of H†
D or

equivalently of the restricted Model 8 with m2 ! �m2.

We now introduce particle and anti-particle creation and annihilation operators

ci(p), c?i (p), di(p) and d?i (p) where i = 1 . . . 4. These operators obey the fermionic
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anti-commutation relations

[ci(p), c
?
j(k)]+ = [di(p), d

?
j(k)]+ = �(k� p)�ij, (3.141)

and all other pairs of operators anti-commute. In terms of these creation operators

we may write the Model 8 Hamiltonian as

H =

Z
dp

4X

i=1

q
p2 +m2

e↵ [c
?
i (p)ci(p) + d?i (p)di(p)] . (3.142)

Similar expressions can be written for the momentum, parity and other operators.

Next we introduce local field operators

 ̂(r) =
4X

i=1

Z
dp

⇥
ci(p)ui(p)e

ip·r + d?i (p)vi(p)e
�ip·r⇤

 ̂?(r) =
4X

i=1

Z
dp

h
c?i (p)ũ

†
i (p)e

�ip·r + di(p)ṽ
†
i (p)e

ip·r
i
.

(3.143)

The novel twist here is the appearance of ũ and ṽ in the definition of  ?. These

operators obey the canonical anti-commutation relation

[ a(r), 
?
b (r)]+ = �ab�(r� r0). (3.144)

Thus far we have simply re-written the non-interacting Model 8 in the language of

canonical field theory. But we may now consistently treat interactions by coupling

appropriate bilinears of the field operators to external scalar and gauge fields. A

subtlety that would arise in the perturbative analysis of interactions is that the dy-

namically determined inner product would also need to be recomputed perturbatively

[18].
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Chapter 4

Potential Applications within

Condensed Matter

A major goal in condensed matter physics is to represent the low-energy physics

of strongly interacting quantum many-body systems in terms of weakly interacting

quasiparticles that are either bosonic or fermionic [20]. In a seminal paper Dyson

[7] showed that a Heisenberg ferromagnet could be represented as a theory of weakly

interacting bosons called magnons or spin waves; this representation allowed thermo-

dynamic calculations of unprecedented accuracy.

Dyson’s formulation had the unorthodox feature that the bosons were governed

by a Hamiltonian that was superficially non-Hermitian. More precisely there were

two inner products at work in Dyson’s representation of a ferromagnet. First, there

was what we will call the “kinematic inner product” with regard to which the boson

creation and annihilation operators were adjoints of each other. In other words, this

was the inner product with regard to which the quasiparticles were bosons. Second

there was the “dynamical inner product” with regard to which the Hamiltonian was

self-adjoint. Conversely, however, the quasiparticles were not bosonic with respect to

the dynamical inner product and the Hamiltonian was not self-adjoint with respect
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to the kinematic inner product.

By contrast the conventional approach is far more restrictive in that there is only

a single inner product with regard to which the quasiparticles are defined and with

regard to which the Hamiltonian and all other physical operators must be self-adjoint.

The purpose of this chapter is to explore whether Dyson’s more flexible concept of

non-Hermitian quasiparticles can be more broadly applied, particularly to problems

that have so far resisted conventional Hermitian analysis.

The t� J model is believed to capture the essential physics of the cuprate super-

conductors, which represent one of the grand unsolved puzzles of theoretical physics

[8]. In this chapter we apply non-Hermitian quantum mechanics to this model and

obtain a representation of its low energy physics in terms of a Dyson boson and a

Dyson fermion. By design these quasiparticles are defined with respect to a kinematic

inner product; the Hamiltonian that governs them is not self-adjoint with respect to

the kinematic inner product but with respect to the dynamical inner product.

First we review Dyson’s work on ferromagnets, highlighting the role of the two

inner products. We then adapt the analysis to antiferromagnets, a useful prelude

to the study of the t � J model. In the following section we describe a spin S

generalization of the t � J Hamiltonian (the physical case relevant to the cuprates

is S = 1/2). A natural and convenient way to write the t � J Hamiltonian is to

use a super-algebra that is a super-symmetric generalization of the su(2) angular

momentum algebra. After presenting this supersymmetric formulation of the t � J

model we finally write the problem in terms of non-Hermitian quantum mechanics.
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4.1 Magnets

4.1.1 Single spin

A single spin has 2s + 1 basic states |s,m > where s is the total spin and m is its

z-component. s is the same for all states of the multiplet and m = �s, . . . , s. These

states are assumed to be orthonormal

< s,m|s,m0 >= �mm0 . (4.1)

The spin-operators Sz, S+ and S� obey the angular momentum algebra

[S+, S�] = 2Sz, [S+, Sz] = �S+, [S�, Sz] = S�, (4.2)

where, as usual, the spin-raising operator S+ = Sx+iSy and the spin-lowering operator

S� = Sx�iSy. As shown in textbooks, the e↵ect of these operators on the basis states

|s,m > is

S+|s,m > = (s�m)1/2(s+m+ 1)1/2|s,m+ 1 >,

S�|s,m > = (s�m+ 1)1/2(s+m)1/2|s,m� 1 >,

Sz|s,m > = m|s,m > . (4.3)

Dyson introduced an alternative set of basis states

|u >= Fu|s,�s+ u > (4.4)

where u = 0, . . . , 2s. The state |0 > corresponds to having the z-component of

the spin maximally down; the states |1 >, |2 >, |3 >, . . . correspond to raising the
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z-component by increments of one. These states are orthogonal but not normalized

< u|v >= F 2
u�u,v. (4.5)

The normalization factors F0 = 1 and

Fu =

✓
1


1�

1

2s

� 
1�

2

2s

�
. . .


1�

u� 1

2s

�◆1/2

(4.6)

for u = 1, 2, . . . 2s. Fu is judiciously chosen to map the spin-raising operator S+ to

the bose creation operator b†, as will be seen below.

Making use of eqs (4.3), (4.4) and (4.6) it is not di�cult to show

S+|u > =
p

2s
p
u+ 1|u+ 1 >,

S�|u > =
p

2s


1�

u� 1

2s

�
p
u|u� 1 >,

Sz|u > = (�s+ u)|u > . (4.7)

Now consider a di↵erent Hilbert space with two operators b and b† that are the

adjoints of each other under a certain inner product, the “kinematic inner product”.

These operators are assumed to satisfy the bose commutation relations

[b, b†] = 1. (4.8)

Provided the kinematic inner product is positive definite it follows inexorably by

standard textbook arguments that the basic states in this Hilbert space form an

infinite ladder |u) with u = 0, 1, 2, . . . The state |0) has the defining characteristic

b|0) = 0; (4.9)
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we say this is a state with zero bosons. The state

|u) =
1

p
u!
(b†)u|0) (4.10)

is said to contain u bosons. These states are orthonormal under the kinematic inner

product

(u|v)kin = �u,v (4.11)

and the e↵ect of the bose creation and annihilation operators on these states is

b†|u) =
p
u+ 1|u+ 1),

b|u) =
p
u|u� 1),

b†b|u) = u|u). (4.12)

Following Dyson, we now establish a mapping between the space of spins and the

bose oscillator space by identifying the spin state |u > with the boson state |u). Thus

|u >! |u) (4.13)

for u = 0, . . . , 2s. States with more than 2s bosons have no spin space counterpart.

Dyson’s mapping allows us to export the inner product of the spin space to the bose

space. We call this induced inner product the dynamical inner product. Explicitly

(u|v)dyn = F 2
u�u,v (4.14)

for u = 0, . . . , 2s. We take Fu = 0 for u > 2s. Thus states with more than 2s bosons

are “weightless”.

Dyson’s mapping eq (4.13) also allows us to establish the following correspondence
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between spin and bose operators

S+ !

p

2sb†,

S� !

p

2s


1�

b†b

2s

�
b,

Sz ! �s+ b†b. (4.15)

This correspondence follows from comparison of eq (4.7) and (4.12).

b and b† are not the adjoints of each other under the dynamical inner product.

Since we are denoting the adjoint with respect to the kinematic inner product as †,

let us signify the adjoint with respect to the dynamical inner product by ?. We can

then see for example that

(b†)? =


1�

b†b

2s

�
b (4.16)

and

(b†b)? = b†b. (4.17)

4.1.2 Heisenberg Ferromagnet

We now consider a two-dimensional Heisenberg ferromagnet in which the spins occupy

the sites of a square lattice. Thus the lattice sites (m,n) have position vector rmn =

maêx + naêy where êx and êy are unit vectors along the x and y axes, m and n are

integers, and a is the lattice constant. Each site has four nearest neighbors. The

site (m,n) has neighbors located at rmn + � where � = aêx, aêy, �aêx and �aêy

respectively for the four neighbors. We denote the spin operator at position r as

S+(r), S�(r) and Sz(r). Operators at a given site are assumed to obey the angular

momentum algebra eq (4.2); spin-operators at di↵erent sites are assumed to commute.

We consider a spin s ferromagnet so the basic states at each site are a spin multiplet

89



of 2s+ 1 states. The Hamiltonian for a Heisenberg ferromagnet is

HF = �
J

2

X

r

X

�

[Sz(r)Sz(r+ �) +

1

2
S+(r)S�(r+ �) +

1

2
S+(r+ �)S�(r)].

(4.18)

Thus each spin is coupled to its nearest neighbors. We assume the exchange constant

J > 0.

Now consider a system of bosons b(r) and b†(r) that live on a square lattice in

two dimensions (lattice constant = a). The operators b(r) and b†(r) are assumed to

be adjoints of each other under the kinematic inner product. They are assumed to

obey the bosonic commutation relation

[b(r), b†(r0)] = �r,r0 . (4.19)

Thus b†(r) creates bosons at site r; b(r) annihilates them. We may now represent the

ferromagnetic Heisenberg Hamiltonian eq (4.18) in terms of bosonic quasiparticles by

using Dyson’s mapping. From the correspondence eq (4.15) between spin and bose

operators we obtain the bosonic form of the Heisenberg Hamiltonian

HF =
Js

2

X

r,�

[2b†(r)b(r)� b†(r)b(r+ �)� b†(r+ �)b(r)]

+
J

4

X

r,�

[b†(r)b†(r+ �)b2(r+ �) + b†(r)b†(r+ �)b2(r)]

�
J

2

X

r,�

b†(r)b(r)b†(r+ �)b(r+ �). (4.20)

Note that the boson Hamiltonian HF is not self-adjoint under the kinematic inner

product (H†
F 6= HF ) due to the terms in the second line of eq (4.20). However it is
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self-adjoint under the dynamical inner product (H?
F = HF ).

4.1.3 Heisenberg Anti-ferromagnet

A Heisenberg anti-ferromagnet is simply a ferromagnet with J < 0. An equivalent but

more convenient description of the Heisenberg anti-ferromagnet on a square lattice is

the following: Imagine two interpenetrating square lattices, the site labelled (m,n)

on the first lattice is located at r1(m,n) = maêx + naêy. Here m and n are integers.

The sites of the second square lattice are displaced from those of the first by (a/2)êx+

(a/2)êy. Thus the site labelled (m,n) on the second lattice is located at r2 = (m +

1/2)aêx + (n + 1/2)aêy. Regardless of the lattice on which it sits, each site has four

nearest neighbors. The displacements from a given site to its four nearest neighbor

sites are �1 = (a/2)êx + (a/2)êy, �2 = (a/2)êx � (a/2)êy, �3 = �(a/2)êx + (a/2)êy,

and �4 = �(a/2)êx � (a/2)êy. We imagine there is a spin at each site and that the

spin at each site is antiferromagnetically coupled to its nearest neighbors. Thus the

Hamiltonian for a Heisenberg anti-ferromagnet is

HA = J
X

r,�

[S(1)
z (r)S(2)

z (r+ �) +

1

2
S(1)
+ (r)S(2)

� (r+ �) +
1

2
S(2)
+ (r+ �)S(1)

� (r)].

(4.21)

The sum over r in eq (4.21) extends over the sites of the first lattice; the sum over �

extends over the four nearest neighbor displacements enumerated above. The super-

scripts (1) and (2) over the spin operators serve to remind us that the spin is on lattice

one or lattice two respectively.

For the Heisenberg ferromagnet the exact ground state is that all the spins point

maximally down along the z-axis1. In Dyson’s boson representation the ferromagnetic

1Or along any other direction. The ground state of a ferromagnet spontaneously breaks rotational
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Figure 4.1: Two interpenetrating square lattices. Each site on the first square lattice
(shown in blue) has four nearest neighbours that are on the second lattice (shown in
red). The displacements to these four neighbors, marked �1, �2, �3 and �4 are shown.
In the cuprates there are copper atoms at both red and blue sites. At half-filling
e↵ectively there is a spin-half at each site; these spins are anti-ferromagnetically
coupled. In the doped compound some fraction of the sites are occupied by holes.

ground state is the state in which no bosons are present. Anti-ferromagnets present an

altogether more formidable problem. The exact ground state for an anti-ferromagnet

is not known except in one dimension for the case of spin s = 1/2. The ideal ‘Néel

state’ is one in which the spins on the first lattice are maximally down along the z-

axis and the spins on the second lattice are maximally up along the z-axis. The Néel

state is not the exact ground state of the anti-ferromagnet but it is believed to be

qualitatively similar2 and therefore a good starting point from which to obtain a more

accurate picture of the ground and excited states of a Heisenberg anti-ferromagnet.

Thus in representing an anti-ferromagnet in terms of Dyson bosons we shall take the

Néel state to be the one with no bosons present.

symmetry and thus there is a manifold of equivalent ground states.
2There are many circumstances where it is known the Néel state is not even qualitatively right: in

one dimension, on a triangular lattice in two dimensions or even on a square lattice in two dimensions
if next nearest neighbor interactions act to frustrate Néel ordering.
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To this end we establish a second mapping between a single spin and a single bose

oscillator. In this second “anti-Dyson” mapping a state with spin maximally up is to

be identified with the state of zero bosons. Thus we introduce the anti-Dyson basis

for a spin multiplet

|u,A >= Gu|s, s� u > (4.22)

where u = 0, . . . , 2s. The normalization constant G0 = 1 and

Gu =

✓
1


1�

1

2s

� 
1�

2

2s

�
. . .


1�

u� 1

2s

�◆�1/2

(4.23)

where u = 1, 2, . . . , 2s. Gu has been judiciously chosen to ensure that the spin raising

operator S+ maps to the bose annihilation operator b, as will be seen below.

Making use of eq (4.3), eq (4.22) and (4.23) it is not di�cult to show

S+|u;A > =
p

2s
p
u|u� 1;A >,

S�|u;A > =
p

2s
p
u+ 1

h
1�

u

2s

i
|u+ 1;A >,

Sz|u;A > = (s� u)|u;A > . (4.24)

We may now establish an anti-Dyson mapping between spins and bose oscillators by

identifying the spin state |u;A > with the bose oscillator state |u). Thus

|u;A >! |u) (4.25)

for u = 0, . . . , 2s. States with more than 2s bosons have no spin space counterpart.

The anti-Dyson mapping allows us to export a dynamical inner product to the bose

space as before. The remarks made earlier about this dynamical inner product apply

mutatis mutandis [see the paragraph surrounding eq (4.14)].

The anti-Dyson mapping eq (4.25) also allows us to establish a second correspon-
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dence between spin and bose operators

S+ !

p

2sb,

S� !

p

2sb†

1�

b†b

2s

�
,

Sz ! s� b†b. (4.26)

This correspondence follows from comparison of eqs (4.24) and (4.12).

Equipped with the second Dyson mapping we now return to the Heisenberg anti-

ferromagnet. We consider two interpenetrating square lattices as above and assume

that there are two kinds of lattice bosons. One kind lives on the sites of the first lattice:

b†1(r1) creates this kind of boson at site r1; b1(r1) annihilates it. The other kind live

on the second lattice and are created and annihilated by b†2(r2) and b(r2) respectively.

These creation and annihilation operators are adjoints of each other with respect to

the kinematical inner product and are assumed to obey bosonic commutation relations

[bi(r), bj(r
0)] = �r,r0�ij (4.27)

where i and j equal 1 or 2.

We may now represent the Hamiltonian for the Heisenberg Hamiltonian eq (4.21)

in terms of bosonic quasi-particles using Dyson’s mapping between spins and bosons,

eq (4.15) on the sites of the first lattice and using the anti-Dyson mapping eq (4.26) on

the sites of the second lattice. This strategy ensures that the Néel state corresponds
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to the boson vacuum and yields a bosonic form of the Heisenberg Hamiltonian

HA =Js
X

r,�

[b†1(r)b1(r) + b†2(r+ �)b2(r+ �)]

+Js
X

r,�

[b†1(r)b
†
2(r+ �) + b2(r+ �)b1(r)]

�J
X

r,�

b†1(r)b1(r)b
†
2(r+ �)b2(r+ �)

�
J

2

X

r,�

b†1(r)b
†
2(r+ �)b†2(r+ �)b2(r+ �)

�
J

2

X

r,�

b†1(r)b1(r)b1(r)b2(r+ �). (4.28)

Note that the boson Hamiltonian HA is not self-adjoint under the kinematic inner

product (H†
A 6= HA) due to the terms in the last two lines of eq (4.28). However it is

self-adjoint under the dynamical inner product (H?
A = HA).

4.2 Doped Magnets

A typical cuprate such as La2�xSrxCuO4 consists of stacked planes of Cu atoms.

Within a plane the Cu atoms are arranged in a square lattice. In the pure compound

La2CuO4 there is one electron available per Cu atom. If electron-electron interactions

were weak the electrons could hop from atom to atom via tunneling. However in the

cuprates the electron-electron repulsion is strong, forbidding double occupancy of the

Cu sites. Each site is therefore occupied by a single electron. The electrons are locked

in place and immobile. A material like this is called a ‘Mott insulator’. The only

degree of freedom is the electron spin that can point up or down at each site. The

decidedly unequal competition between hopping and electron-electron repulsion tends

to make the spins align anti-ferromagnetically. The undoped cuprates may therefore

described by the antiferromagnetic Heisenberg Hamiltonian.
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In the doped compound La2�xSrxCuO4 there are only 1�x electrons per site and

therefore a fraction x of the sites are unoccupied. The absence of electrons (“holons”)

can hop and when the density of holons is su�ciently high the materials are observed

to exhibit strange metallic and then superconducting behavior. The competition be-

tween hopping and electron-electron repulsion for the doped compounds is described

by the t� J Hamiltonian. In the next section the t� J Hamiltonian is formulated in

a way that is particularly well suited to our present purpose.

4.2.1 Supersymmetric formulation of t� J Model

In the parent compound there are two possible states for each site: spin up or spin

down. In the doped material each site has three possible states: spin up, spin down or

missing electron. The missing electron state corresponds to zero spin and a positive

charge +e on the site. In the following it will be useful to consider a spin-s gener-

alization wherein there are 4s + 1 states per site. The site may either be in one of

the 2s+ 1 states |s,m > with m = �s, . . . , s or in one of the 2s states |s� 1/2,m >

with m = �(s � 1/2), . . . , s � 1/2. If the site is in a spin s state, |s,m >, the total

spin is s, the z-component of the spin is m and the site is assumed to have no charge.

On the other hand if it is in a spin s � 1/2 state, |s � 1/2,m >, the total spin is

s � 1/2, its z-component is m and the site has a positive charge +e due to the lack

of one electron. In summary, whereas the basic states per site of a spin s magnet are

a single spin s multiplet |s,m >, the basic states per site for our t � J model are a

“super-multiplet”: a pair of multiplets with spin s and spin s� 1/2. The physically

relevant case is s = 1/2.

Having specified the basic states at each site we must now describe the basic

operators out of which the t � J Hamiltonian will be built. For a magnet these

operators are S+, S� and Sz. They satisfy the su(2) angular momentum algebra eq

(4.2) and their action on the states |s,m > of a spin s multiplet is well-known eq

96



(4.3). Now it turns out there is a super-algebra that is a natural generalization of the

su(2) algebra and the t � J model can be written (super)naturally in terms of the

elements of this algebra.

The super-algebra has eight elements. Six of them are raising and lowering oper-

ators (also known as Weyl elements): S+, S�, R+, R�, T+ and T�. The remaining two

are the Cartan elements A and Sz. Since this is a super-algebra the elements may also

be grouped di↵erently into commuting elements (S+, S�, Sz, A) and anti-commuting

elements (R+, R�, T+, T�). Just as the su(2) algebra is defined by the commutation

relations of its elements eq (4.2), so the super-algebra is defined by the commutation

or anti-commutation relations amongst all pairs of its elements. First, there are the

diagonal Weyl element relations:

[S+, S�] = 2Sz,

{R+, R�} = A+ Sz

{T+, T�} = A� Sz (4.29)

As usual square brackets denote commutators; curly brackets, anti-commutators.

Next there are the o↵-diagonal Weyl commutation relations

[S+, R+] = �T+, [S�, R+] = 0,

[S+, R�] = 0, [S�, R�] = T�,

[S+, T+] = 0, [S�, T+] = �R+,

[S+, T�] = R�, [S�, T�] = 0, (4.30)
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and the o↵-diagonal Weyl anti-commutation relations

{R+, T+} = 0, {R�, T+} = S+,

{R+, T�} = S+, {R�, T�} = 0. (4.31)

The Cartan elements A and Sz commute with each other; [A, Sz] = 0. The final set

of defining relations are the commutators of the Weyl and Cartan elements:

[S+, Sz] = �S+, [S+, A] = 0,

[S�, Sz] = S�, [S�, A] = 0,

[R+, Sz] =
1

2
R+, [R+, A] = �

1

2
R+,

[R�, Sz] = �
1

2
R�, [R�, A] =

1

2
R�,

[T+, Sz] = �
1

2
T+, [T+, A] = �

1

2
T+,

[T�, Sz] =
1

2
T� [T�, A] =

1

2
T�. (4.32)

These relations serve to define the algebra.

Now let us describe the action of the algebra elements on the states of a super-

multiplet. S+ and S� simply raise and lower the z-component of the spin in either

multiplet:

S+|s,m > = (s�m)1/2(s+m+ 1)1/2|s,m+ 1 >,

S+|s� 1/2,m > = (s� 1/2�m)1/2(s+ 1/2 +m)1/2

|s� 1/2,m+ 1 >,

S�|s,m > = (s�m+ 1)1/2(s+m)1/2|s,m� 1 >,

S�|s� 1/2,m > = (s+ 1/2�m)1/2(s� 1/2 +m)1/2

|s� 1/2,m� 1 > . (4.33)
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R+ and R� switch states between multiplets

R+|s,m > = (s+m)1/2|s� 1/2,m� 1/2 >,

R+|s� 1/2,m > = 0,

R�|s,m > = 0,

R�|s� 1/2,m > = (s+ 1/2 +m)1/2|s,m+ 1/2 > .

(4.34)

Note that R+ lowers the z-component of spin by half when it changes from spin s to

spin s� 1/2. T+ and T� also switch states between multiplets

T+|s,m > = (s�m)1/2|s� 1/2,m+ 1/2 >,

T+|s� 1/2,m > = 0,

T�|s,m > = 0,

T�|s� 1/2,m > = (s+ 1/2�m)1/2|s,m� 1/2 >,

(4.35)

but whereas R+ lowers the z-component by half, T+ raises it. Finally the states of

the super-multiplet are eigenstates of A and Sz

A|s,m > = s|s,m >,

A|s� 1/2,m > = (s+ 1/2)|s� 1/2,m >,

Sz|s,m > = m|s,m >,

Sz|s� 1/2,m > = m|s� 1/2,m > . (4.36)

Thus the A value distinguishes the multiplets; the Sz value specifies the state within

the multiplet. Eqs (4.33), (4.34), (4.35) and (4.36) fully describe the action of the
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super-algebra elements on the states of the super-multiplet. The normalization factors

in these equations follow inexorably from the commutation and anti-commutation

relations that define the super-algebra. Note that the action of S+, S� and Sz is

exactly as one would expect from the textbook theory of angular momentum; this is

because these operators constitute an su(2) subalgebra of our super-algebra.

We can now write the t� J Hamiltonian in supersymmetric form

Ht�J = �⌧
X

r,�

[R+(r+ �)R�(r) +R+(r)R�(r+ �)

+T+(r+ �)T�(r) + T+(r)T�(r+ �)]

+J
X

r,�

[Sz(r)Sz(r+ �)� {A(r)� 2s}{A(r+ �)� 2s}

+
1

2
S+(r+ �)S�(r) +

1

2
S+(r)S�(r+ �)].

(4.37)

We assume the super-spins occupy the sites of a square lattice in a plane. The lattice

position vectors are r = maêx + naêy where m and n are integers and the sum over

r in eq (4.37) is over m and n. � denotes the four nearest neighbor displacements

±aêx and ±aêy; the sum over � in eq (4.37) is over these four values. The super-

spin operators at di↵erent sites are assumed to commute and at a given site they are

assumed to obey the super-algebra defined by eqs (4.29), (4.30), (4.31) and (4.32).

Thus the t� J Hamiltonian couples super-spins at neighboring sites.

Finally a word about the symmetry of the Hamiltonian, Ht�J . The Heisenberg

Hamiltonian HF eq (4.18) has rotational symmetry. Formally this is demonstrated

by defining the total spin operators

Stot
+ =

X

r

S+(r) (4.38)
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(and Stot
� and Stot

z similarly) and verifying that [HF , Stot
+ ] = 0 (as well as [HF , Stot

� ] = 0

and [HF , Stot
z ] = 0). In the same way we can define the total super-spin operator

Rtot
+ =

X

r

R+(r), (4.39)

and similarly for all other elements of the super-algebra. For the t � J Hamiltonian

to be supersymmetric it would have to satisfy [Ht�J , Rtot
+ ] = 0, [Ht�J , Stot

+ ] = 0 and

so on for all eight elements of the super-algebra. This condition is not met except for

special values of the parameters t and J . The t� J Hamiltonian is certainly not su-

persymmetric for the experimentally relevant values. Thus although the Hamiltonian

is built out of supersymmetric algebra elements it is not generally supersymmetric.

In this respect it is similar to SUSY extensions of the standard model for which also

super-symmetry is broken.

4.2.2 Dysonization of the t� J Hamiltonian

Dyson’s key insight was to define magnons as bosonic with respect to a non-standard

inner product. For the t� J model we wish to take that scheme one step further and

define a ‘Dyson fermion’ in addition to the Dyson bosons we have already alluded to.

In order to represent the t�J Hamiltonian in terms of Dyson bosons and fermions

first let us consider a single super-multiplet corresponding to the states at a single site.

The basis states for a super-multiplet that we have so far adopted are the 4s+1 states

|s,m > and |s� 1/2, µ > where m = �s, . . . ,+s and µ = �(s� 1/2), . . . , s� 1/2.

Following Dyson we now introduce the alternative basis states

|u, 0i = Fu,0|s,�s+ ui, |u, 1i = Fu,1|s� 1/2,�(s� 1/2) + ui (4.40)

where u = 0, . . . , 2s for the |u, 0i states and u = 0, . . . , 2 � 1 for the |u, 1i states.

Thus |0, 0i corresponds to having a spin s at the site that is maximally down; |u, 0i
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corresponds to raising the spin u times. Similarly |0, 1i corresponds to having a spin

s � 1/2 at the site that is maximally down; |u, 1i corresponds to raising that spin u

times. The states |u, 0i are neutral; the states |u, 1i correspond to having having a

net charge +e on the site. Usually these sites are described as holons; in light of the

supersymmetry discussion above, it seems natural to associate the charge with the

presence of a non-Hermitian ‘Dyson fermion’.

The states in this basis are orthogonal to each other but not normalized:

hu, a|v, bi = F 2
u,a�ab�uv. (4.41)

The normalization factors Fu,a are chosen judiciously:

S+
|u, ai =

p

2s
p
u+ 1|u+ 1, ai; (4.42)

so as to maintain the action of S+ as a bosonic raising operator. This is accomplished

by defining

|u, ai =
1

p
2s

u
1

p
u!
(S+)u|0, ai, (4.43)

which corresponds to the choice

Fu,a =

✓
1�

1

2s

◆1/2 ✓
1�

2

2s

◆1/2

. . .

✓
1�

u� 1 + a

2s

◆1/2

. (4.44)

The |u, ai basis is fully specified by eqs (4.40) and (4.44) or equivalently by eq (4.43).

We may now determine the action of all the super-spin operators in this basis.
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The results are

S+
|u, ai =

p

2s
p
u+ 1|u+ 1, ai

S�
|u, ai =

p

2s


1�

u� 1 + a

2s

�
u1/2

|u� 1, ai

Sz|u, ai =
⇣
�s+ u+

a

2

⌘
|u, ai

A|u, ai = a|u, ai, (4.45)

for the commuting elements of the super-algebra, and

T+
|u, 0i =

p

2s|u, 1i

T+
|u, 1i = 0

T�
|u, 0i = 0

T�
|u, 1i =

h
1�

u

2s

ip
2s|u, 0i

R+
|u, 0i = u1/2

|u� 1, 1i

R+
|u, 1i = 0

R�
|u, 0i = 0

R�
|u, 1i = (u+ 1)1/2|u+ 1, 0i, (4.46)

for the anti-commuting elements.

Now consider a di↵erent Hilbert space inhabited by a single Bose creation and

annihilation operator pair (b, b†) and a Fermi pair (a, a†) that satisfy the canonical

commutation relations

[b, b†] = 1,

{a, a†} = 1, a2 = a†2 = 0. (4.47)

We also suppose [a, b] = [a†, b] = [a, b†] = [a†, b†] = 0. The creation and annihilation
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operators are adjoints of each other under the kinematical inner product. in this

Hilbert space. One can show inexorably from these assumptions that the basic states

of this Hilbert space are |u, 0) and |u, 1) where u = 0, 1, 2, . . . The state |0, 0) has the

defining characteristic

b|0, 0) = a|0, 0) = 0; (4.48)

it contains neither a b boson not an a fermion. The state

|u, 0) =
1

p
u!
(b†)u|0, 0) (4.49)

contains u bosons and no fermions. The state

|u, 1) =
1

p
u!
(b†)ua†|0, 0) (4.50)

contains u bosons and one fermion. These states are orthonormal under the kinematic

inner product

(u, a|v, b)kin = �u,v�a,b. (4.51)

We now establish the following mapping between the states of a supermultiplet

and the bose-fermi Hilbert space discussed above. The mapping is

|u, ai ! |u, a) (4.52)

Here u = 0, . . . , 2s for a = 0 and u = 0, 2s � 1 for a = 1. States with more bosons

have no counter-part in the super-spin space.

As before this correspondence exports a dynamical inner product to the Bose-

Fermi Hilbert space

(u, a|v, b)dyn = F 2
ua�uv�ab. (4.53)

We assume Fu,0 = 0 for u > 2s and Fu,1 = 0 for u > 2s � 1. Thus states with a
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greater number of bosons are weightless.

The mapping eq (4.52) also allows us to establish a correspondence between super-

spin and bose and fermi operators. The correspondence follows from eqs (4.45) and

eq (4.46) and is as follows

S+
!

p

2sb†, S�
!


1�

b†b+ a†a

2s

�
p

2sb

Sz ! (�s+ b†b+
1

2
a†a), A ! a†a

T+
!

p

2sa† T�
!


1�

b†b+ a†a

2s

�
p

2sa

R+
! ba† R�

! ab†. (4.54)

Ferromagnetic t-J model

Now let us consider the t� J model eq (3-37). For the cuprates we are interested in

anti-ferromagnetic coupling (J > 0) but it is instructive to first consider the case of

ferromagnetic coupling, J < 0.

We introduce a single boson b(r), b†(r) and a single fermion a(r), a†(r) at each

site of the lattice. Bose and Fermi creation and annihilation operators at the same

site are taken to be adjoints of each other under the kinematic inner product. Using

the correspondence between super-spin operators and bose and fermi operators, eq

(4.54), we may write the t� J Hamiltonian as

Ht�J = �2⌧s
X

r,�

[a†(r+ �)a(r) + a†(r)a(r+ �)]

+
1

2
Js

X

r,�

a†(r)a(r)

+
1

2
Js

X

r,�

[ b†(r)b(r)� b†(r+ �)b(r)] + . . . (4.55)

In eq (4.55) we have written out the leading quadratic term in the Dyson represen-
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tation of the ferromagnetic t � J Hamiltonian. At this level, it is a theory of non-

interacting bosonic spin-waves (“magnons”) and fermions with charge +e (“magni-

nos”).

The interaction terms that were omitted in eq (4.55) and are presumably small in

this representation, are given by

Hint = �⌧
X

r,�

b†(r)b(r)a(r)a†(r+ �)

�⌧
X

r,�

[b(r+ �)b†(r)a†(r+ �)a(r) + b†(r)b(r+ �)a†(r)a(r+ �)]

�
J

2

X

r,�

[b†(r)b(r) +
1

2
a†(r)a(r)][b†(r+ �)b(r+ �) +

1

2
a†(r+ �)a(r+ �)]

+
J

4

X

r,�

[a†(r)a(r) + b†(r)b(r)][b†(r+ �)b(r)].

(4.56)

The full t�J Hamiltonian, Ht�J is not self-adjoint under the kinematic inner product

(H†
t�J 6= Ht�J); however it is self-adjoint under the dynamical inner product, H?

t�J =

Ht�J .

Anti-ferromagnetic t-J model

For the anti-ferromagnetic t� J model, as for the Heisenberg anti-ferromagnet, it is

convenient to imagine a pair of interpenetrating square lattices. The t�J Hamiltonian
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may then be re-written

Ht�J = �⌧
X

r,�

[R(2)
+ (r+ �)R(1)

� (r) +R(1)
+ (r)R(2)

� (r+ �)]

�⌧
X

r,�

[T (2)
+ (r+ �)T (1)

� (r) + T (1)
+ (r)T (2)

� (r+ �)]

+J
X

r,�

[S(1)
z (r)S(2)

z (r+ �)� {A(1)(r)� 2s}{A(2)(r+ �)� 2s}]

+
J

2

X

r,�

[S(2)
+ (r+ �)S(1)

� (r) + S(1)
+ (r)S(2)

� (r+ �)]. (4.57)

The sum over r in eq (4.57) extends over the sites of the first lattice; the sum over �

extends over the four nearest neighbors of each site. The superscripts (1) and (2) over

the super-spin operators serve to remind us that the spin is on lattice one or lattice

two respectively.

At least for light doping it makes sense to assume that the Néel state is a good

starting point for the ground state of the t � J model. In the Néel state the spin is

maximally down at each site of the first lattice; it is maximally up at each site of the

second lattice. The magnitude of the spin is s � 1/2 at sites occupied by a hole. It

is s at all other sites. In representing the Néel state in terms of Dyson bosons and

fermions we shall take the Néel state to have zero bosons and to have Dyson fermions

at all the sites with holes.

To this end we establish a second mapping between the states of a single super-

spin and the Hilbert space of a single boson and fermion. In this mapping we identify

the states with spin maximally up as the state with zero bosons whereas before we

had assigned this part to spin maximally down. Thus we introduce the basis

|u, 0i = Fu,0|s, s� ui

|u, 1i = Fu,1|s� 1/2, s� 1/2� ui (4.58)
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in place of eq (4.40). This time we choose

Fu,a =

✓
1�

1

2s

◆�1/2 ✓
1�

2

2s

◆�1/2

. . .

✓
1�

u� 1 + a

2s

◆�1/2

. (4.59)

As before we then establish a mapping |u, ai between the states of the super-spin and

the states |u, a) of a bose-fermi system. By virtue of this correspondence we obtain a

second mapping between super-spin and bose and fermi operators:

S+
!

p

2sb S�
!

p

2sb†
✓
1�

b†b+ a†a

2s

◆
,

Sz ! (s� b†b�
1

2
a†a), A ! a†a,

R+
!

p

2s

✓
1�

b†b

2s

◆
, R�

!

p

2sa,

T+
! ba†, T�

! b†a. (4.60)

In order to write the t�J Hamiltonian in terms of bosons and fermions we use the

first correspondence eq (4.54) on the first lattice and the second correspondence eq

(4.60) on the second lattice. Keeping the leading terms up to cubic order we obtain

a novel representation of the t� J Hamiltonian in terms of bosons and fermions:

ht�J = Js
X

r,�

[b†1(r)b1(r) + b†2(r+ �)b2(r+ �)]

+Js
X

r,�

[a†1(r)a1(r) + a†2(r+ �)a2(r+ �)]

+Js
X

r,�

[b1(r)b2(r+ �) + b†2(r+ �)b†1(r)]

�⌧
p

2s
X

r,�

[a†1(r)a2(r+ �)b1(r) + a†2(r+ �)a1(r)b
†
1(r)]

�⌧
p

2s
X

r,�

[a†1(r)a2(r+ �)b†2(r+ �) + a†2(r+ �)a1(r)b2(r+ �)] + . . .

(4.61)
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The remaining interaction terms which are quartic and quintic are presumably small

in this representation.

The essential physics of the t � J model in this regime is thus revealed to be

that of charged fermions hopping in a background of spin-waves. This represents

a novel formulation of the t � J model; it is a tantalizing possibility that the non-

Hermitian quasi-particles here defined may illuminate the underlying physics of high

Tc materials.
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Chapter 5

Conclusion

Though it is one of the fundamental assumptions of quantum mechanics, the require-

ment that operators be Hermitian is not crucial to the construction of the theory. We

have seen that all of the virtues of Hermiticity are retained by adopting a di↵erent

set of assumptions, in which the parity and time-reversal operators figure largely.

It may seem as though there is no compelling a priori reason to do this, given

that Hermitian quantum mechanics has been serving physicists well since the early

20th century. The philosophically- minded or adventurous physicist may pursue such

modifications to fundamental quantum mechanics in the interest of exploiting the

totalitarian principle, but even taking a conservative view one can see a posteriori

that the ends justify the means in this case. By pursuing non-Hermitian quantum

mechanics we open up for analysis entire classes of Hamiltonians that were previously

o↵-limits. The extension to Todd allows fermionic systems to be analyzed in the

PT framework constructed by Bender et al. Certainly one of the most interesting

fermionic systems to study is the fundamental particle itself, governed by the Dirac

equation. Dirac of course assumed that operators were Hermitian but remarkably

that assumption turns out to be moot. The fundamental Dirac fermion emerges

from the PT theory exactly as it does in the Hermitian theory, identical in every
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aspect. Hermiticity, therefore, is not the only type of symmetry that can give rise

to the world we see around us, to the extent that the world we see around us is

described by the Dirac equation. The world world us may contain fermions that are

not described by the Dirac equation; for example it is not clear whether neutrinos are

Dirac or Majorana. The observation of flavor oscillations precipitated a sea change

in the Standard Model description of the neutrino; by flavor oscillating the neutrino

acquired mass because the only way to have mass di↵erences in neutrino species is if

there is a non-zero mass matrix.

A most remarkable feature of non-Hermitian quantum mechanics is that a new

type of particle is described by the higher dimensional representations of the PT

Dirac equation. This particle can have zero e↵ective mass even when the mass matrix

is non-zero, which suggests that it may be capable of describing massless neutrino

oscillations. In order to determine whether Model 8 is a viable candidate for the

neutrino, the theory must be generalized to include three species, among other things.

This is the topic of future work. Regardless of whether Model 8 describes the neutrino

it is a breakthrough in its own right. An independent particle comprised of a quartet

of spinors is a new beast, unlike any known fermion, and as such warrants further

investigation.

The applications of non-Hermitian quantum mechanics may extend beyond the

realm of fundamental physics into the emergent world of condensed matter. Dyson

was unwittingly discovered non-Hermitian quantum mechanics in 1956 when he found

that high precision calculations of interacting spin waves in a ferromagnet were facil-

itated by use of a non-Hermitian Hamiltonian. Dyson’s technique of defining quasi-

particles with respect to a non-standard inner product allows for a novel way of

writing the t-J Hamiltonian; this new form of the t-J Hamiltonian may prove more

wieldy to calculations and even shed some light on the physics that underlies high

temperature superconductivity, arguably the most outstanding problem in theoretical
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condensed matter physics [8].
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