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INTRODUCTION

In 1961, M. F. Atiyah described a spectral sequence linking the integral
cohomology of a finite group G to a graded version of its complex
representation ring, compatible with product structures and restriction and
transfer maps,

H*(G, Z)=>Gr, R(G).

The grading is based on the topological filtration of R(G), which is in turn
derived from the skeletally induced filtration on the K-theory of the classi-
fying space, BG. Atiyah conjectured that the Grothendieck, or y-filtration
provided a purely algebraic description of this filtration, but this has since
been shown to be false. However, in 1983, C. B. Thomas showed that the
topological filtration would nonetheless be algebraically determined by the
y-filtration provided that the latter is admissible on the category of
p-groups, that is, compatible with the representation-theoretic process of
induction.

In this paper, we show that this condition does not hold, by explicitly
calculating the y-filtration on the representation rings of certain extra-
special 2-groups.

1. BACKGROUND

The Atiyah-Hirzebruch spectral sequence provides a link between
the integral cohomology ring of a finite group G and the K-theory of its

* This paper is a shortened version of the author's doctoral thesis which was prepared
under the guidance of Dr. Ronnie Lee, Yale University.
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classifying space, graded by the even, decreasing, skeletally induced
filtration,

K, (BGy=ker{K(BG) — K(BG*~ ") }.

In [1], Atiyah transplanted the representation ring R(G) into this
spectral sequence by means of the natural map «: R(G) — K(BG), which
becomes a topological isomorphism & upon completion with respect to the
I-adic and skeletal filtrations, respectively. To replace K(BG) with R(G) as
the abutment of the Atiyah—Hirzebruch spectral sequence requires that we
define a new, even, decreasing filtration on R(G), called the ropological
filtration, by

RP(G)=a"'(K,(BG)).
We can then create a spectral sequence
H*(G; Z)= Gr, R"P(G).

Although the topological structure K(BG) has been replaced with the
algebraic structure R(G), the influence of topology persists in the definition
of the filtration of R(G). Atiyah sought to remove this last vestige of
topology by describing an algebraically defined filtration, called the
Grothendieck, or y-filtration, that he conjectured would coincide with the
topological filtration. This filtration is defined on any augmented A-ring R
as follows; for k>0, R, =R}, , is the additive subgroup generated by
monomials of the form

Y ) yxy) -y (x,),

where y*(x) = A*(x + k—1), ¥7_, i,> k and the x; belong to the augmenta-
tion ideal. We will say that the element y'(x) has weight i; the total weight
of a product TT}_, y%(x,) is the sum of the individual weights, }7_, /.
More generally, for any y € R, we define the maximum weight of y to be the
largest integer & such that ye R, .

Exterior powers can be used to give R(G) the structure of an augmented
A-ring; the resulting y-filtration is finer than the topological filtration.
Atiyah conjectured that in fact R}, (G) = R3?(G), for all finite groups G and
for all k> 0. Specifically, he proved that the conjecture holds for any group
G when ke {0,1,2}, and for all k if G is either the symmetric group S,
the group of quaternions @, or an elementary abelian p-group. In addition,
in the appendix to his paper, Atiyah outlined an intriguing connection
between his conjecture and the Chern subring of the group cohomology. If
p € R(G), then to the vector bundle {, we may associate Chern classes
c;(p)e H¥(G, Z), which generate a subring of H**'(G,Z) denoted by
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Ch(G). Then Ch(G) is contained in the subgroup of universal cycles in the
spectral sequence

H*(G, Z)= Gr,R“*(G),

and moreover, R}, (G)=R37(G) for all k20 if and only if the Chern
subring Ch(G) is mapped surjectively onto Gr,R"”’(G) by the natural
epimorphism. Thus, in particular, the two filtrations agree on all
finite groups for which the Chern ring exhausts the even-dimensional
cohomology.

However, counter-examples to Atiyah’s conjecture have been discovered.
In his doctoral thesis of 1972, A. C. Weiss showed by direct computation
that the alternating group on four letters has the property that R}, ,(4,)
is contained as a subgroup of index 2 in R.Y, ,(A4,). In 1983, C. B. Thomas
generalized this to a whole family of counter-examples, PSL,(F,), where
/= +3 (mod8) [11]}. 1. Leary and N. Yagita have recently found a
counter-example in the category of p-groups [6], namely

(A, B,C: AP =B"=C”"'=[B,C]=1,[4,C]1=B,[4, B]=C"),

where p > 5 and s is either 1 or a quadratic non-residue modulo p.

2. ADMISSIBLE FILTRATIONS

Although Atiyah’s conjecture has proved false, there is still reason to
hope that the topological filtration is somehow algebraically determined.
To this end, J. Ritter introduced in his thesis of 1970 the concept of
admissible filtrations [9].

DEFINITION.  An even, decreasing filtration {R5,(G)} on the representa-
tion ring of a finite group G is called admissible if:

(1) (functoriality) for any group homomorphism h: G — I', h*(R5.(I'))
€ R3,(G);

(2) R&(G)=R(G) and Ri(G)=X(G);

(3) for any &, /, R5,(G)- R5,(G) = Ry, (G);

(4) if G=C is cyclic, then R4, (G)= KG);

(5) R3(G)/R{G)=H(G, Z);

(6) for all subgroups H<G and all k>0, Ind$ (R3,(H)) < R%,(G).
We shall refer to (6) as the induction condition.

The I-adic filtration is admissible, for example, and in fact it is the
unique admissible filtration on the category of abelian groups. Any
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admissible filtration on the category of p-groups extends uniquely to an
admissible filtration on the category of all finite groups via

R3(GY= [} IndZ(R3(P)), *)

PG

where the intersection runs over all p-subgroups P of G.

It is not difficult to show that the topological filtration is admissible on
the category of finite groups, and that the y-filtration satisfies conditions
(1) through (5). However, C.B. Thomas’ family of counter-examples,
PSL,(F,), /= +3 (mod 8), shows that the y-filtration does not in general
satisfy the induction condition, because it is known that topological and
y-filtrations coincide on all p-subgroups of such groups. On the positive
side, it is evident that the topological filtration on PSL,(F), /= +3
{mod 8) is nonetheless algebraically determined, by the y-filtration on its
p-subgroups and by (*) above. It is therefore reasonable to pose the ques-
tion, as C. B. Thomas did in [11], of whether the y-filtration is admissible
on the category of p-groups.

It is important to note that Leary and Nagita’s counter-example does
not necessarily answer this question in the negative. It is possible for a
group to have more than one admissible filtration, as Ritter showed for the
group of quaternions [9]. However, knowing that the y-filtration is
admissible on the category of p-groups would enable us to characterize the
topological filtration algebraically on this categoy, at least up to the inver-
sion of certain elements. More precisely, suppose xe€ R57(P) and H is a
subgroup of P on which the two filtrations agree. Then by functoriality,

Res® (x)e RYP(H)= R}, (H).
By reciprocity, we can conclude
Ind?, o Rest (x)=x-Indf,(1)e R} (P).

In order to pursue C. B. Thomas® question, it makes sense to study the
y-filtration on p-groups P for which it is known that the two filtrations do
not coincide; this is guaranteed to be the case if Ch(P)s H**"(P, Z). It has
been shown that this condition is satisfied by the family of extra-special
p-groups (see [4] for p=2, [10] for more general primes).

Remark. The result above for p=2 is surprising in light of Quillen’s
work in [7], in which he shows that the mod-2 cohomology of extra-
special 2-groups is generated by the Stiefel-Whitney classes (which are the
“mod-2 equivalent” of Chern classes) associated to complex representations
of the group.
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3. THE EXTRA-SPECIAL p-GROUPS D"

In the following, P’, &(P), and Z(P) denote the commutator subgroup,
the Frattini subgroup, and the center of P, respectively.
DEeFINITION. A p-group P is called special if either

(1) P is elementary abelian, or
(2) Pis of class 2 and P’ = @(P)=Z(P) is elementary abelian.

A special p-group is called extra-special if P' = ®(P)=Z(P)=Z/p.

The structure of extra-special p-groups is well known; see, for example,
[3] In this paper, we consider the extra-special 2-groups that are central
products of r copies of the dihedral group; such groups have presentation

D'={A,B,C, 1<i<r: A>=B>=C*=1;
[4;, B;]1= C is the only non-trivial commutator ).

Note that Z= {1, C}; also, D" has order 2*"*! and exponent 4. The num-
ber of elements of order 4 and non-central elements of order 2 are counted
in the proposition below.

PROPOSITION 3.1. In D’, we define the subsets
E={yeD :|y|=4} and T,={yeD -2, :|y|=2}

Then |F| =2% —2" and |T| =2% +2"—2.

Proof. Elements of D" can be written uniquely in the form
y=A%---A“Bl ... B/C",

where ¢,, £, e€ {0, 1}. If ¢;,=1, then we will say y contains A,; similarly for
J;and B;, and ¢ and C, respectively; y is of order 4 if and only if it contains
an odd number of pairs {4;, B,}.

Suppose y contains exactly k pairs {4, B;}, where k is an odd integer
less than r. There are (;) choices of these k indices; for the remaining r — k
indices, y contains either 4; or B; or neither, but not both, and y may or
may not contain C. This accounts for (;)-3"7%-2 such elements of
order 4. Thus, in total we have

r
E|=2 3ok,
Fi=2 2 <k)

k odd
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This sum can be evaluated using the generating function f(X)= (X + 3)".
Then |E| = f(1)—f(—1)=4"-2"=2%—2"Finally, |T,| = |[D'| - |F| - 2. ]

It will be important in what follows to establish that the automorphism
group of D’ operates transitively on F, and 7;; for this we turn to the
theory of bilinear forms. In the central extension of any extra-special
2-group P of order 2" +!

0— Z(P)— PS5 V—0,

V is an elementary abelian 2-group, and may be regarded as a
2r-dimensional vector space over Z(P)= Z/2. Define a bilinear form on V
by B(w, y)=[w, 7], where w and 7 are pre-images of w and y under =,
respectively; (V, B) is a symplectic space. Let {w,, y,, .., w,, y,} denote a
hyperbolic basis for V over Z/2. Associated to B is the quadratic form
Q(v) =? making (¥, Q) an orthogonal space. Now, any automorphism
Qe Aut(P) acts as the identity on Z(P), and therefore induces a linear
automorphism € on V which is in fact an element of the group of
isometries O(V, Q).

ProOPOSITION 3.2. Let P be an extra-special 2-group, with unique non-tri-
vial central element C. Let Inn(P) denote the group of inner automorphisms
of P. Then the sequence below is exact:

1 - Inn(P) = Aut(P) » O(V, Q) — L.

A proof may be found in [5].

PROPOSITION 3.3. Let T={xeP—Z(P):x’=1} and F={xeP—-T:
x*=1}. Then Aut(P) operates transitively on T and on F.

Proof. Let x, x’ be distinct elements of 7. If x=x'C, then some inner
automorphism will bring x’ to x. Hence, it suffices to show that O(V, Q)
operates transitively on the set of singular elements and on the set of non-
singular elements of V.

If r=1, then ¥=1{0, w, y, w+ y}. The only non-singular element is
w+ y; it is obvious that the two singular elements w and y may be inter-
changed, and so we are done.

So suppose r>=2, and let », v' e V be such that Q(v)= Q(v'). Since Q is
non-degenerate, there exist , #' € V such that

B(u, v)=B(u, v')=1 and O(u)=0(').

Let W= (u, v) and W*= (', v'); we claim that (W, Q) and (W*, Q) are
isometric orthogonal spaces. To prove this, first note that W and W* are
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both non-singular with respect to Q; if Q(u)=Q(«')=Q(v)= Q(v’), then
O(u+v)=1=0(u' +v'). That they are isometric now follows from the fact
that they are of the same dimension and have the same Arf invariant,
that is,

Qu) Q(v) = Q') Q(v').

By Witt's theorem, the isometry between W and W* extends to an
isometry of V into itself, Qe O(V, Q), such that $(v) is one of v', ¥, or
o' +u'. If Q(v)=u', then we know Q(u’)=Q(u)=Q(v)=Q(v'); we can
modify the isometry Wi W* by composing it with the isometry that
switches the hyperbolic basis elements of W*. If @(v) = u’ +v’, then Q(u) =
O(u')y=1; we can modify the original isometry by composing it with
s, . W* > W* Hence, we may assume 2(v) =v’, and so we are done. ||

The maximal subgroups of P may be determined in a similar manner.
Suppose M < P is maximal; by definition of the Frattini subgroup, &(P)=
Z(P)= M, and so M projects via m onto a subgroup W of V. Since
[P:M]=2, W, as a subspace of V, has codimension 1. Thus, W has odd
dimension 2r — 1, and so the bilinear form B cannot be symplectic on W.
Clearly, the failure must be the result of a degeneracy; that is, there is some
we W such that B(w, z) =0 for all ze W. Since B is non-degenerate on V,
we may consider W as w' within V.

Suppose M’ is another maximal subgroup of P; let W =n(M') be
the corresponding subspace of V. As before, there is some w'e W’ such
that W’ = (w')* in V. If Q(w)= Q(w’), then by Proposition 3.2 there is
some Qe O(V, Q) such that Q(w)=w’, and therefore an automorphism
e Aut(P) such that Q(M)=M'. We have proved

PrOPOSITION 3.4. Let P be an extra-special 2-group of order p¥ ™!,
where r 2 2. Then up to isomorphism, there are exactly two maximal sub-
groups of P.

4. THE y-FILTRATION ON V

Before beginning our calculations on the y-filtration on the representa-
tion ring of D', we present some general results on frequently encountered
factor groups.

PrOPOSITION 4.1. Let H be a subgroup of a finite group G that contains
G'. Let
Ve=G/G' and Vi=H/G'
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We regard R(V;) and R(Vy) as subrings of R(G) and R(H), respectively.
Then for all k 20,
Ind ’;f,(Rék(VH)) < R (V)

Thus, Ind$ (R}, (H)) < R%,(G) (i.e., the induction condition holds on H < G)
if and only if
Ind(R (H)/R3 (V) € Ry, (G)/ R (Vs),

where Ind is the obvious induced map.

Proof. Vg and V, are in the category of abelian groups, for which the
y-filtration coincides with the admissible /-adic filtration. The second state-
ment of the proposition is an obvious consequence of the first. |

In every situation in which we make use of Proposition 4.1, V; and V,
will be elementary abelian. In the next proposition, we explicitly calculate
the y-filtration on such groups for p=2. First recall that if {a,, a,, .., a,}
is a Z-basis for I(G), let o, ;=7(a;) be the y-filtration generator of weight
i associated to a;. Then R}, (G) is generated over Z by monomials of total
weight > k in the generators

{o.,1je{l,2,., 1}, 1<i<e(a)}.

PROPOSITION 4.2. Let V be an elementary abelian group of exponent 2
and rank n; let {U,, U,, .., U,} be a set of generators of V over Z/2. For
1 <i<n, let Y, denote the 1-dimensional representation given by

~1, if i=j
. U. =
V() {1, for i#j.
Set u;=y,— 1€ (V). Then for all k> 1, R}, (V) is generated over Z by
{Zmu‘;‘ ulniee{0,1}, ) e,#0, m+z ei>k}.

Proof. We begin by showing that these monomials are contained in
R, (V) by using induction on k. For k=1, the proposition is trivial;
assume now that it holds up to £ — 1. Consider the monomial

no

n
p=2"ust ..y where m+) e, >k

If 3 e;22 the inductive step is easy; we can assume without loss of
generality that e, =1 and write

p=02"u " u? Uty u,.




THE ADMISSIBILITY OF THE y-FILTRATION 509

The first monomial lies in R}, _,,(¥) by the inductive hypothesis, and «,
is an element of I(V) = R}, (V). Hence, the product lies in R}, (V).

The case where p=2"u, is handled by noticing that 1=y? implies
ul= —2u,.

To show that this set of monomials generates, recall that by definition,
R%, (V) is generated over Z by

n
{uf‘ Uy e,-zk}.

i=0

For each e;>2, we may use u>= —2u, to break the monomial up into a
linear combination of those contained in the statement of the proposi-
tion. §§

An element of R(V) that arises frequently in subsequent calculations is,
in the notation of the preceding proposition,

=( T weeur)-r
O<e;<p—1

that is, s is the augmentation ideal element corresponding to the sum of all
possible 1-dimensional representations of V. If V is identified with P/P’ for
some 2-group P, then s can also be considered as the augmentation ideal
element corresponding to the sum of all 1-dimensional representations of P.

The character of s may be computed by taking advantage of a certain
symmetry in the elements and characters of ¥, namely,

T = YU - U
=Yl WU U
This symmetry can be best expressed by adopting the notation
for y=UD---UeV, letp, =y - -yYreR(V)

Then for all w, ye V, we have p (w)=p,(y). The character of s evaluated
at some y e V can then be computed as

s=( L pu0))-2=( % p0m)-2

weV we ¥V

=¥, p,0)=2"

_{0, y=1
-2 y#1L
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PROPOSITION 4.3.  The element s has maximum weight n in the y-filtration
on R(V).

Proof. First, we claim that multiplication by u, on R}, (V) increases
weight by exactly 1. For suppose

y=Y 2" M- uln,
j
where .#; is odd. Then by Proposition 4.2, the maximum weight of y is
given by

mjin {m_,»+ é:o e”}.
Now, multiplying the jth summand in the expression of y by u, results in
27 M uE U, e, ;=0
S g, e =

In either case, the maximum weight of the product of u; with the jth
summand is m;+ 3 ; e, ;+ 1. The claim now follows.
Next, by our calculation of the character of s, we have

s-uy= —2",,

which has maximum weight n+ 1; hence, s must have started with
weight n.

5. Basic CALCULATIONS

First we compute the representation ring R(D’). For 1 <i<r, let «, be
the 1-dimensional representation that sends 4, to —1 and all other
generators to 1; define B, analogously. (At this point, we issue the warning
that no distinction will be made between the a; and f; that appear in R(D")
for different values of r.) The set of all possible tensor products of these
generators contains 2% 1-dimensional representations.

Notice that any sum of 1-dimensional representations may be considered
a virtual character of V"= D’/Z. We define the V-weight of such an element
to be its maximum weight in the y-filtration on V.

Remark. 1If we R(V"), then w may be trivially extended to R(V7), for
any g>r; its V-weight does not change under this extension. For this
reason, we will usually omit the superscript on V, unless the context
demands such specification.
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Let N, = (B, .., B., C); then N, is a normal, abelian subgroup of D" of
index 2". Let &, be the 1-dimensional representation of N, given by

C— —1
(o {C
i 1.
This induces a 2'-dimensional representation on D" with character
2, y=1
Ind3&,(y)=IndE,(y)={ =2, y=C
0, y¢Z

It can be shown with Mackey’s criterion that this is an irreducible
representation of D".
This accounts for all the irreducible representations of D', as

IDrl =22r+1=22r ‘(1)2_‘_ 1. (2r)2.

Next, let a;=a;,~1 and b;=;—1 for 1 <i, j<r; the warning issued
about the «; and B; also applies to the g, and b,. Let g, =Ind{, —2". Then

{g,}u{af---ab] bl e, f;€{0, 1}, Ze,+ Zf;>0}

constitutes a Z-basis for the augmentation ideal, /(D").

The y-filtration generators of weight 1 are just the generators of the
augmentation ideal described above. The only y-filtration generators of
weight >1 are those associated to the only representation of degree >1;
these are of the form

O, =74, )= A(Ind¢, — 2"+ k— 1)

N(IndE) A= I(=2"+k—1)

M= EM*

(=1~ (i"j) PInde,),

0

-
I

based on the unique A-ring structure on Z.

The exterior powers of Indf, may be calculated using a formula
described in [10]; for any representation p of a finite group G, the charac-
ter of Xp is given by

Xwp(8) = sym, (eigenvalues of p(g))

where sym; denotes the jth symmetric polynomial.

481/167:2-19
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The eigenvalues of Ind¢,(1) are clearly 27 copies of 1, and the eigenvalues
of Ind¢ (C) are just as clearly 2" copies of —1. For ye T,, the eigenvalues
of Ind¢, must be square roots of unity and, given the character of Ind¢,,
they must add up to zero. Hence the set of eigenvalues consists of 27!
copies of —1 and 2"~ copies of 1. For ye F,, we have y?>=C and so all
eigenvalues are square roots of — 1; by character considerations, there must
be 2"~ copies each of i and —i (where i=./—1). The symmetric polyno-
mials in these sets of eigenvalues appear, up to sign, as coefficients of the
polynomials

P(XN)=(X-1)?=Y (—1)* (i) ¥

A

Po(X)=(X+1)"=} (i) X*
A

PrX)=(X=1)" " (X+ 1) =X 1) =Y (— 1) (2;1> X2

r—1
Pe(X)=(X—)* " (X+i)* '=(X?+1)7'=Y <2u ) X2,
u
The character of A/ Ind¢&, is therefore given by
G
J

/2
(—1)f( ) y=C
¥

¥ IndE (y)=" 0, y¢Z(D"), j odd,
2r—l
(—1)1( ] )1 }’ETnJ'=21,
2r—1
(%)) yeE, j=2l

To express A Indé, in terms  of the irreducible representations, we intro-
duce some new notation. Let 7, and F, denote the images in V" of T, and
E, respectively, and set

0= p, and ¢=1Y p,

veTr veF,

where p, is as defined in Section S. Notice that

s=s5,=(1+¢+0)-2,
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where s, is the augmentation ideal element corresponding to the sum of all
1-dimensional representations of D”.

PrOPOSITION 5.1. (1) For odd j, ¥ Ind€, = (1/2)(%) Ind¢,.
(2) For all j, 2 Indé, = A% ~7 Ind¢,.
(3) For j=2I

NindéE,=My(l)- 1+ M (I)- 0+ M,(I)- ¢,
where the coefficients are given in the table

I even (j=0 (mod 4)) !l odd (j=2 (mod 4))

(e R (R )
wo HEC) HE)e )
wo HECO) @)

Proof. Parts (1) and (2) follow immediately from the character of
A Ind€,. Assume j=2I; to compute M,(/), consider

[\

(¥ Ind¢,, 1) = Y (A Indg,)(y)

1 2r 2r41 2,#1
|2 ~1y
= [2(5)+ 2 ) 500
1 2’ 2r——l
= [2 (%) onmeien (7))

Now use Proposition 3.1. To compute the coefficients M, (/) and M,({), we
must first find the character of 8 and ¢.

LEMMA 5.2
-yl yeZ,
B(y)=<2""-1, yeT,
-2, yekF.
-l yez,
$(y)=<-2"1, yeT,

-t yek,.
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Proof. For any ye D',

0y)= 3 p.(y)=Y py(v), where F=n(y)eV”
veT, veT;

1
»Z p5(D).

to !

For yeZ, p,=1, and so the first part of the character of 0 is clear.
We now show that 6 is constant on elements of 7,. Let 4 be the
automorphism of D" defined by

A4(A;)=B,, A(B;)= A, for 1<igr.
Then for all w, ye D’, it can be checked that

1, if A(w) and y commute,
-1, otherwise.

puly) = [40w), ] ={
For any ye T,

0)=3 ) pay)=5 % [4w), y1=1Y [w »],

we T, we T, weT,

because T, is a characteristic subset of D”. Now suppose y’ is another ele-
ment of 77; then by Proposition 3.3, we know that there exists 4 € Aut(D")
such that A(y)=y’. Consider

00 )=3 2 [wy1=3 ¥ [w 4]

we T, we T,
=3 L [w, Ay1=1 Y [w,y1=6(»),
we T, we T,

since A acts as the identity on (D") = Z. A similar argument works to show
that 6 is constant on elements of F,, and to show that ¢ is constant on
elements of 7, and F,.

To compute the character of 6, therefore, we need only evaluate it on
Judiciously chosen elements of 7, and F,.. In particular, we have

0(4,)=1 Y [w. 4,]

we T,

=3(l{we T, :w does not contain B,}| —|{we T, : w contains B,}|).
Now,

{we T, :w does not contain B,} = {w',w'd,:weT,_ }uU{A,, A,C}
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and
{weT,:w contains B,}
=|{wB,:weTl,_,}u{wd,B,:weF_,}u{B,, B,C}.
Applying Proposition 3.1 yields
0(A,)=L (¥ '+27-2)-2¥"NH=2"1-1.

The remaining results in the lemma may be computed more indirectly.
Let { represent the character of § on elements of F,. Then

0=[D"1<6,1>= 3 6(y)

ye D

=22 '+ 27 = 1)+ T2 = 1)+ |F L

We can solve for { with the aid of Proposition 3.1 to get {= —2""'—1.
Finally, the character of ¢ is given by s=(1+60+¢)—2";

$(A4,)=(s—1-0+27)(4,)= -2""}
$(4,.B)=(s—1-0+2)(4,B)=2"" |}

We now return to the proof of Proposition 5.1, in which we are con-
sidering the case j=2/ If / is even, then the character of A/ Ind¢, may be

simplified to
2’>
) €Z,
( J Y

Ajlnd§r= 2r~]
(1), y¢Z
Since
2r—1
_ . YEZ,
e+an={" " 252

we may conclude that in the expression for A/ Ind¢,,

S (P RO ()

Now suppose j= 2 where / is odd. Since 4/ Ind¢, is constant on Z, T,,
and £, it is clear that it can be expressed as a linear combination of 1, 6,
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and ¢. This means that if y, y' are non-central elements of the same order,

then
<}'j Ind{r’ py') = <lj Indér’ p)'z'>’

and so we may calculate the remaining coefficients by

M) =— (¥ Indg,, 6,
|T,

r

1
My(l)=— (¥ Indé,, 05, |
|F7]

r

The higher weight generators of the y-filtration on R(D") are therefore of

the form

u 27—j\ 1 (2
o= ¥ 00 ((20) 5 () mae,
. j=1 k— J 2 J
Jj odd
k . 2r_j
+ 3 (=1 k—j (Mo(D)- 1+ M, (1)- 0+ My(1)-4].
gy
Since we know that g, , lies in the augmentation ideal, we can replace
Indé, with g,, 8 with 1, =6 —|T;|, and ¢ with £ =¢ — |F|, and assume that
all copies of the trivial representation get cancelled out.
The coefficient of g, can be rewritten using an elementary combinatorial

identity [8]:

t () 5 (006 £ (-

j=1
j odd

j odd
To simplify the expressions of the remaining coefficients, let

1 L.2) o _apny/2r-!
4‘Oevcn(k’r)_—27 Iz=:0 <k—-21)< 1 >’

[ even

let @ ,q44(k, r) denote the analogous sum over all odd values of the index /.

LEMMA 5.3.
0, =Lolk,r) g, +Li(k,r)t,+ Ly(k, r)f,
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where

Ltk )= (=110 (3) 2470,

2"
Ly(k, r)=(=1)* [( k) 2714 (9ol 1) = Pevenlhs 1)
V0 aale r)],
L2(ks I')= Ll(k$ r) + (_— l)k 2r+ 1podd(k’ I').

In the following corollary, we present a few special cases of these new
coeflicients.

COROLLARY 54. (1) Foranyr,o,,=f—-(2"—1)g,.
(2) The top-weight generator is
Oy,= =277, + 22T TR T =) 4+ 27T TR ) £
(3) The generator of penultimate weight is redundant, as
Oy_1.,=—2""'op,.

Proof. The computations are straightforward; in cases (2) and (3),
notice that

‘Oeven(ka l‘) = Soodd(k’ r)' l

6. A CHANGE OF Basis

We have already mentioned the fact that
s;=(1+0+¢)—-2"=t,+f.

Since s, has several nice properties that we would like to exploit, it is
advantageous to switch from using {¢,, /,} to using {¢,+ f,, £, —¢,} in our
description of the y-filtration on R(D”"). We let d, denote the difference
f.—1t,; from Lemma 5.2, the character of d, is

0, yeZorT,

an={>, 257

(Hence, d, acts as a sort of characteristic function on the the elements of
order 4.) The higher weight y-filtration generators can be written as

ak,r=K0(k9 r)'gr+Kl(k9 r)-s,+K2(k, r)'dr’
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where Ko=Ly, K, =%(L,+L,), and K,=3(L,—L,). We know that L,
and L, are integers, but we are only guaranteed that K,, K, Z[1/2].

LEMMA 6.1. For any r,

(1) a2,r=—(2r——1)gr+%sr+%dﬂ
(2) 0y ,= =27 " lg 42V ¥y L2 g

Proof. This is just a rewriting of the results of Corollary 5.4. |}

LEMMA 6.2. More generally we have

Kitk,r)=(=1)* 25>~ [(i>“2(2k)]

Proof. By referring to Lemma 5.3, we have

2"
Ki(k, r)= (= 1)* [(k

2’ 1 L2l 27 =20\/27 !
— _Ik 2k~2r—1__ __1[ .
o) = 2 0 () )]
The sum in this expression can be simplified by considering the generating
function

) 2k72r—1+ (podd(k’ r)_ peven(ka r))]

P.(X)=[—X +(X+1)]"

(_1)1 (’7) (X+1)2m~21
2"’22’(_1), (m>(2m—21> yu+a
l A

0 2=0

~

[
I3

<

Il
IngEi

!

=L e () e

If we set m=2""1, then the coefficient of X* in the polynomial above is the
sum that appears in the expression for K (k, r). This coefficient can also be
calculated in the following manner:

~
3

P X)=[-X*+X*4+2X+1]"=[2X+ 1]

- § (7)o

u=0 \H

Now equate the kth coefficients for m=2""" |
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CoroLLARY 6.3. If K (k,r)eZ, then for k <2,
ak,rEKO(k’ r)gr+K2(k’ r) dr (mOd R}Z,k(V))

Proof. By Proposition 4.3, s, has V-weight 2r, and so the resuit is trivial
for k <2r. For k> 2r, by Proposition 4.2, it suffices to show that the 2-adic
absolute value of K,(k, r), denoted by v,[K,(k, r)], exceeds k —2r. By
Lemma 6.2, we need only show

G

SUBLEMMA 6.4. Let p be a prime. Then for any k< p’,

o[(5)]

Proof. In [10], C.B. Thomas proves that if k is written in p-adic
expansion,

k=(ag+a,p+ -+ +a,p’)p',
where 0<a; < p—1, a,#0, then

j_k=laota+ - +a)
= = .

v, (k!

The sublemma follows directly from this resuit.

Returning to the proof of Corollary 6.3, first notice that if k > 2"~ !, then

2,-
o) [G{) -2 (2,; 1)] —r—u,(k) = 1,

. )=0, and so
since we are assuming that £k <2". If k<2"~!, then

AR ) R

hence, the 2-adic absolute value of the difference is Zr—~v,(k)+121. |

LEMMA 6.5. (1) f andt, each have V-weight r;
(2) s, has V-weight 2r;
(3) d, has V-weight r + 1.
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Proof. We have already calculated the V-weight of s, in Proposition 4.3.
The V-weight of d, may be calculated in a similar way; from the character
of d, and Proposition 4.2, we know that multiplication by d, in R(V)
increases y-filtration weight by r+1. A more direct proof involves
induction on r.

For (1), use the fact that the order of an element of D" depends on the
parity of the number of pairs {A4,, B;} it contains to establish the recursion
formulas

¢r+1 =¢r(1 +ar+l+ﬁr+l)+0r(ar+1ﬂr+l)+ar+lﬂr+lﬁ
0r+1 =9r(1 +ar+l+ﬂr+l)+¢r(ar+lﬁr+l)+ar+l +ﬂr+l‘

Rewriting in terms of augmentation ideal elements gives

for=s,(0+a, 1 +b, )+ +a b [1+271Q27+ 1]
+2%(a, 1 +b,,1)
tor=s,(1+a,, 1 +b, )+2t,+a,, b, [f,+2 (2 —1))]
+2%(a, 1 +b,.0)
To start the induction, we can directly compute
fi=, B, —1=a;b,+a,+b, and ti=a,+b;

both of these clearly have V-weight 1. The inductive step is now an easy
consequence of Proposition 4.3. For the direct proof of the V-weight of d,,
notice that d, =a, b, and that

dr+1=dr(z_ar+lbr+l)+2rar+lbr+l‘ l

Remark. The previous line shows that
d=2"" Z a;b; (mod R, .5, (V).

Recall that the kth y-filtration ideal on D’ is generated over Z by
monomials of the form

ail.r'oiz,r"'ain,r'v’

where ve R}, (V) (v is possibly trivial) and Zj.:l’ i;= k. To express such
monomials in terms of our chosen basis for /{D"), we must investigate the

product structure among the generators. Examining characters yields the list

g, 0= —2", s,o=—2%y,  foranyvel,

d;’.: __2r+ld’, g3=sr_2r+lgr' (66)
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The next lemma greatly simplifies the expression of y-filtration generators
modulo the y-filtration on R(V).

LEMMA 6.7. For ve R}, (V) and 2<i<2’,
o, ,v=K,(i,r)d,v (mod Ry, , ,,(V)).
Proof. By (6.6), we have
6, ,0=Ko(i, )(—2"v)+ K,(i, r)(—2%v) + K, (i, r) d,v.

Now,

Koli, r)(—270) = (— 1)+ (—2') (21) 2i-r=ty = g0 (2) v

1
= 2 1Hrou) gy
—_— b

for some odd integer .# (using Sublemma 6.4). By Proposition 4.3, this
element has V-weight (i—1+r—uv,(i)+ k). The restrictions on i iIn
the hypothesis of the lemma guarantee that r—uv,(i)—120, and so
Kol(i, r)(—2")v e Ry, (V)

Next, if K,(i, r)eZ, then we are done. If K,(i, r)e Z[1/2], we have

[ K (L n)]=i—r—uv,{i)= —1.
But then
2+ 0, [K (5, 1)) =i+ (r—vs(D)) = i+1,
as i <2 Hence K, (i, r)(—2")ve R}, (V). )

7. EXAMPLES

In {10], C.B. Thomas used the Hochschild-Serre spectral sequence
of the central extension to show that Ch(D!)= H*"(D!, Z). Thus the
topological and y-filtrations coincide, meaning in particular that the
y-filtration on R(D"') is admissible.

It turns out that the y-filtration on R(D?) is also admissible. As it is not
known whether the Chern subring of D? exhausts the even-dimensional
cohomology, we resort to more direct methods. Many of the calculations
become very long and involved, and so only a brief outline is provided
here; full details can be found in [2].

In general, to show that the y-filtration is admissible on a given group
G, we must show that the induction condition holds for all subgroups
H<G. By the transitivity of induction, this can be accomplished by
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showing that the induction condition holds for all maximal subgroups, and
that the maximal subgroups themselves have admissible y-filtration. As
noted in Section 3, up to 1somorphism D? has exactly two maximal sub-
groups, H=D'x{A4,) and J=<{D', 4, B,).

Because H is a direct product,

R(H)=R(D")Y®R({A,)).

Let ¥,: R(D')— R(H) be the ring homomorphism given on the
representation level by p—p® 1; let ¥ 4, : R({A4,)>)— R(H) be given by
%> 1®a,. It is not difficult to show that ¥, and ¥, are A-ring
homomorphisms, and therefore preserve y-filtrations. In fact, we have

k
Ry (H)= 3 Ppi(Ry (D) Peayy (R 1 (<A2D))
j=0
The sum on the right is clearly contained in R%, (H); the opposite inclusion
follows from the fact that each y-filtration generator of R(H) may be shown
directly to lie in the given sum of ideals.

Remark. 1t should be noted at this point that this result need not
generalize to arbitrary direct products of groups. In [9], Ritter showed
that if R5,(—) is an admissible filtration on a category of finite groups
containing G, I, and G x [, then the filtration on G x I” given by

k
RU(GxT)= Y Wo(R5(G))- Wr(R5y (1)

j=0
is admissible, but it need not coincide with RS, (G x I').

To show that the y-filtration on H is admissible, first note that the
maximal subgroups of H are of two types, D' and L x (A,), where Lis a
maximal subgroup of D'. We noted that D' has admissible y-filtration; the
same is true of L x {A4,) because it is abelian. The induction condition on
D' < H is covered by the following lemma.

LemMMA 7.1. Let I'<G. If Res$:R(G)— R(I') is surjective, then
Ind ¥(R} (1) < Ry (G).

Proof. By assumption, for any irreducible representation p of I, there
exists some ne R*(G) such that p = Res%n. Now, restriction clearly com-
mutes with the taking of exterior powers; in other words, Res% is a A-ring
homomorphism. Thus,

0,,=v(p—¢e(p))=y(Resi[n—e(n)])
= Res¢[y'(n—e(n))]= Res¢[o, ,].
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Consider

mdSa, = AR5+ 010, ])

. m

-Ind (1),

Lo’ "ain.ﬂn)

= ail‘"l e o"‘n‘nn

using reciprocity. Now Ind¢(1) is an element of R}, (G)= R(G), and so
the monomial above has weight at least 3°7_, i;>k in the y-filtration on
R(G). '}

The other maximal subgroup L x {A,) < H is abelian, and so

k
Ry(Lx {(A33)=Lx (A0) = F WL LULYT Pea, LICA) ]
i=0

Elements of R},,,({A4,>) are multiples of a,; the image of such an element
under ¥, ,,, can be expressed as the restriction of essentially the same
element from H. By reciprocity, therefore, we need only show

Indy . ¥ (Ry(L))< R (H)
This can be done by noting that the diagram

¥y

R(D"Y) R(H)

Ind I’ Ind

R(L) — s R(Lx{A,))

commutes, and three out of the four maps preserve the y-filtration. Thus,
H itself has admissible y-filtration.

To show that the induction condition holds on H < D? by the same
reasoning as above, it suffices to show

Ind 5 o Wi (RY, (D)) < Ry, (D).

Because the y-filtration coincides with the topological filtration for
ke {0, 1,2}, we may assume & > 3. Explicit generators of the y-filtration on
R(D") modulo the y-filtration on R(V') for k>3 may be computed
directly to be

2-1a, b, 2% g, k=20+1
2l by, 2 2 b, ~ 2 g, k=21
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The images of these elements under Ind ﬁzocp pt are
2I;1albl(2+b2)7 2k;lg2’ k=21+1
217 lal b1(2 +b2), 21" lalb[ + 2[_201 ble - 2k_2g2, k= 2[.

To show that these elements belong in the appropriate filtration ideals in
R(D?) we may use brute force for k=4 and 5. The case k> 5 follows by
induction in jumps of 4, via multiplication by the top-weight generator of
the y-filtration on R(D?), namely o, , (and reduction modulo Ry, (V).

Next, we investigate J= (D' A,B,). Because this is not a direct
product, it is vastly more complicted to determine the y-filtration on the
representation ring. In the end, however, a nice recursive pattern emerges,
again in jumps of 4. More precisely, J has two irreducible representations,
obtained by inducing from (B,, 4, B,) the representation

= [/

1, y = Bl >
and its cube, p3. Then it can be shown that for k>4,

Ry (IR (V) =102, 141 Ry - (N R3(V2),

where ¥,=J/Z(J). The maximal subgroups of J are D' and abelian
subgroups of the form (I, A,B8,), where I'<D'. Such subgroups
have admissible y-filtration; direct calculation shows that the induction
condition is satisfied for both.

Finally, the induction condition holds for J < D? by virtue of the fact
that [0, ,,4,]° can be written as the restriction of an element z of weight
4 from the y-filtration on R(D?). Hence, the inductive step is supplied by
reciprocity;

nd2 ([0 1y 1? - R _ay(N)) = 2 - Ind D (Ry ()
< Rgm(Dz) . Rg(k,4)(D2) < ng(Dz).

We have proved

THEOREM 7.2. The y-filtration on D?* is admissible.

8. COUNTER-EXAMPLES

The admissibility of the y-filtration on D' and D? offers some cause
for optimism regarding the general question of the admissibility of the
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y-filtration on the category of p-groups. However, a counter-example is
found at the next simplest extra-special 2-group, D>,

THEOREM 8.1. Let H=D?>x {A;)> < D> Then
Ind 7 (R (H)) & Ryy(D*).
Proof. In particular, we will show that
Ind7 (0, ,® 1)¢ Ry (D),

where o, , is the top-weight generator of the y-filtration on R(D?).
Consider

md} (0, ,®@1)=Ind3 ([ 22+ £1®1)

= —2Ind5(Ind¢,®1—4® 1)+ Ind2 (£, ®1)
—2Ind¢ + (f, +8) Ind (1)
—2g5+ f(2+b;)  (mod Ry, (V).

LEMMA 8.2. R}, (D) R} (V) has Z-basis

{—2g,+1;, 423}

Proof. From the results in Sections 5 and 6, we may compute the
higher-weight y-filtration generators to be

01,3~ &35 0y 3=f1—178;,
63,3=28g3_6fé’ 04‘3=16f;—t3+70g3.

For k=5, we write the generators in terms of s;=1¢;+ f; and d, = f;— 15
(as it can be shown that in this case, all the coefficients will be integers);

o 3=Ko(k,3) g5+ Ky (k, 3) -5+ K,(k, 3) - ;.

By Lemma 6.5, we know that f; and ¢; each have FV-weight 3, s,
has V-weight 6, and d, has V-weight 4. We may therefore reduce these
generators to

Gy:= —7g; (mod R} ,,(V))

o, 3=28¢g, (mod R} ;5,(M))

04 3= —13+70g; (mod R} ,,(V))

0. 3=Ko(k,3) g (mod R3,,(V)), for k> 5.
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A Z-basis for R}, (D’)/Ry,, (V) consists of monomials of the form
0i,3:0G; 370, 30,

where ve R3, (V) (v is possibly trivial) and 3, i;>max{4—k, 1}. If v is
non-trivial, then by Lemma 6.7,

ai},3-vEK2(ij,3)~d3v {mod RVZ(,(+,.])(V))
=0 (mod R} 4, (V).

Hence, we may assume that v = 1. Given the list of reduced generators and
the argument above applied to 7; € R}, (V), we have for n> 1

‘7:1.3"'0f".3=[1_[ Ko, 3)] -85 (mod R}, (V)
i=t

= £ | 11 Kolin 3|27, (mod Ry(9)

using the fact that

gi=15,— l6g;= —16g, (mod R}, (V).

But 04 ;= —16g; (mod R} ,,(V)), and so all monomials having n>1 are
redundant. This shows that R§(4)(D3)/R‘§(4J(V) is generated over Z by

{—13+70g;, —16g,5};
we simplify this basis to the one in the statement of the lemma by noting
3(—t,+70g5) + 13(—16g,)= =313+ 2g,= —t;+2g, (mod R3,,(V)),
2(—1t3+70g5) + 9(— 16g,3) = —2t;—4g; = —4g, (mod R} ,,(V)). 1

The proof of Proposition 8.1 now follows quickly. Consider the
expansions

ty=2a,b,+2a,b,+ 2a4,b,4 (mod R3,,(V)),
52+ byy=2a,b,+2a,b,+a,byby+a, by b, (mod R}, (V).

Ignoring the g, term, it is clear that the I(V) portion of Ind ﬁ’(a4_2® 1),
namely f,(2 + b;), cannot be written as a multiple of — 5+ 2g5. |

We would like to generalize this result to provide a counter-example to
the admissibility of the y-filtration on D" for any r=3. If we let
H. =D""!'x{A,>, it seems reasonable to hope that the induction
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condition fails on each H, < D’; in particular, we would like to show that,
as in the case r=13,

]ndz:(GZ"', r—1 ® 1) ¢ R}é(zr—l)(Dr).

Now, from Lemma 6.1, we know that the top-weight generator of the
y-filtration on D"~ is

Oy, =27 g, + QT s, + (27T Y,
For r >3, these coefficients are all integers. It is easy to work out

I”dz’,(az'*',r#1® 1)
= (=27 g, =27 )+ (2F T Y s, 42770, ) (24 b,)
= —2Y""rg, +(2777d,_)(2+b,)  (mod Ry-i(V)).

Mimicking the proof of Proposition 8.1, our aim is to show that the (V)
portion of this expression, namely 2¥ °~’d, ,(2+5,), cannot appear in
R3 -1 (D7), with or without attached g, terms.

First consider monomials of the form

o e ag

i, r’ ip, 7

where Y, i,>2"" and each ;> 1. If we express each o, in terms of g,,
s,, and d,, then by the list of products (6.6), we see that

g 'o.i,,,r='/ll0gr+‘/ll1sr+'/”2dr:

il,r"

for some .#,, #,, #,c Z[1/2]. In other words, the only elements of (V)
potentially appearing in filtrations beyond their F-weights are Z[1/2]-
linear combinations of s, and d,. Clearly, 2¥ *~’d._ (2 + b,) does not fall
into this set.

We move to the case of monomials having a non-trivial factor in I(V),

ail,r'“ai,,,r'v’

where ve R}, (V) for some k>1 and k+3; ij>2"1. By Lemma 6.7, we
have

Gy, 0, U= <H K, (i, r)) d”-v (mod R}-1,(V))

W

(11 &6, r)) (=2 "' 'dv  (mod Ryp-y(V)).

481/167/2-20
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Now, by considering characters, we have
dr 'dr—l = —2r+1dr71'
In particular, if we let v=d,_,(2+ b,), which has V-weight r 4+ 1, then

g "ain,r'dr—l(2+br)

i, r )
=+ (H K, (i, r)> 20+ bng  (2+b,) {mod R}, -1, (V).

For 277'~'d,_,(2+b,) to lie in R}y-1, (D7), we must find some
{if, «rin} such that ¥, i,>2""" —(r+1) and

(r+1)n+v, [f] K, (i, r)]gZ"z-r.

The key now lies in being able to get a handle on

v [ Kok, 1)) =0,[(— 1) 2" poaalk, 7)]
LKy sor _9IN/27 !
% [Z (k—21>( ! )]‘
{ odd
This we do through a series of lemmas.
LEMMA 8.3. For any 1<k<2,

Lk/2 | 2r~l 2r 2]
ol L () o) Jpranssrms,

with equality holding if k # 2 (mod 4).

Proof. For simplicity, let m=2""". The sum in question appears as the
coefficient of X* in the generating function

2m—2 m _
QX)) =[X*+(X+1))]"= ¥ ) (7)(2"1) 21) b Ch
A=0 I=0 v

We can rewrite this sum by noting that

0. (X)=[2X2+2X+ 11" =[2X(X+ 1)+ 11"

-§ 3 (1)) e
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Our task is thus to determine the 2-adic absolute value of

k m\/ |
Clm, k)= 2!
(m ) 1=§/2_} ( l><k - l)

We now divide into two cases.
Ifk=2n+1, let j=[—n to get

C(m,2n+1)=i ( m )(n'*'j'*'I) anti+i

o \n+j+1 n—j
i m!2n+j+1
TS m—n—j— 1) (n— )2+ 1)

=Y A(m, 2n+1, ).

j=0

We compare the 2-adic absolute values of each term in this sum. For this,
recall from the proof of Sublemma 6.4 that for any positive integer a,
v,(a')=a— B(a), where B(a) denotes the number of ones in the binary
expansion of a. Properties of f include f(2a)=B(a) and B(2a+1)=
B(a)+ 1; less obvious, but well-known among combinatorialists, is the fact
that f(a)+ B(b)— B(a+b) is equal to the number of carries that occur
when a is added to b in base 2. Hence,

v [A(m, 2n+ 1, Yl=n+j+1t4+m—-Bm)—(m—n—j—1)
+f(m—n—j—1)
—(n=N+Bn—j)— 2+ 1)+ p(2j+1)
=n+2+[j-B(H]+[Blm—n—j—1)+B(j)]
+ [B(n— )+ B(j)]— B(m)
2n+2+f(m—n—1)+ (n)— f(m)
=v,[4(m,2n+1,0)].
Equality holds if and only if j= B(/) and no carries occur when adding j
either to m—n—j—1 or to n— j. Now, j= f(j) only when j=0 or 1. If
J=1, then in order for no carries to occur when adding 1 to »— 1, » must
be odd; if in addition no carries occur when adding 1 to m —n— 2, m must

be odd. Since m =2" is even, the inequality is strict for j>0. This implies
that

v,[C(m, 2n+ 1) =v,[A(m, 2n+1,0)]
=n+2+f(m—n—1)+ f(n)~— f(m).
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Recall that m=2"""; then m — 1 has 2-adic expansion
1424224 - 4273

from this it is easy to see that f(m—n—1)+B(n)=r—1for n<2"~". The
conclusion of the lemma now follows.
Now we consider the case k= 2n. Again setting j=/—n, we get

n+1 +_] )
C(m, 2n) = < )(n )2"”
E nt

n+1 m|2n+j

Y T n T, A2

' M

Using the same arguments as above, we obtain
v[A(m, 2n, j)l=n+j+m—pB(m)—(m—n—j)+ f(m—n—j)
—(n=N+Bn—j)—(2)+ B(2)
=n+[j—B()H1+ [Bm—n—j)+B(j)]
+ [B(n—j)+ B(j)]— B(m)
Zn+ p(m—n)+ f(n)— f(m)=v,[ A(m, 2n, 0)],

with equality holding if and only if j=0 or 1 and no carries occur when
adding j either to m —n— j or to n— j. In particular, we get equality when
j=1 and n is odd. Thus, v,[C(m,2n]=v,[A(m,2n,0)] when k=0
(mod 4) and v,[C(m, 2n)] = v,[A(m,2n,0)]+1 when k=2 (mod4). If
the 2-adic expansion of # is

(1+a,2+a,2%+ - +a,2%) 2,
then the 2-adic expansion of m—n=2""'—nis

204 Z (l_ai)2i+t+2s+t+l+ +2r—2,

i=1

from which it is clear that B(2"~'—n)=r— B(n)—uv,(n). This quickly
completes the proof of the lemma.

COROLLARY 84. For all k<2,

v2 [ Kok, r) 12 LK/2 [ —v,(k) —

Proof. 1In the proof of Lemma 6.2, we saw that

Lk/2 ] 27—/ ) gr—1
_ll — 0k
(5 )ila)- G )
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which has 2-adic absolute value k— 1 4+ r —v,(k). For k= 3, this is strictly
greater than the 2-adic absolute value of the non-alternating sum. Now use
the fact that

2 Y (9)=Y(-)=-3 (=) (~)

! odd all / all /

The cases k=1, 2 can be established by direct calculation.

PROPOSITION 8.5. For all r 2 3, the y-filtration on D" is not admissible, as
dZ (631, @ 1) R, (D).
Proof. Let {i,..i,} besuchthat ¥, i,>2""'—r—1. Then

(r+Dn+v, l:ﬁ K, (i, r):]

j=1
=r+n+ Z Uz[KQ(ij, r)]
Jj=1
my mj
=rn+n+ 2 v, [K,(i;, )]+ Z v, [K, (i, r)]
ij even i; odd
mg my
Zm+n+ Y (Gi—v(i)—1)+ Y (3(,—-1)—1)
ij even i odd
n mg
=m+n+3y, i;— Y, v(i)—my—F—m,
Jj=1 ij even

>m+iQ =) —rmy— %
=2""24r(n—mo)—Hr+1+my)

=2""24rm —3(r+1+m,).
It suffices now to show that this quantity is strictly greater than 2"~ —v;
this is true if and only if
rm—Ar+14+m)> —r
< 12r—1r(l +m) > 3(r+ 1 +m,)
< Qr—1D)(14+m)>r

But this last inequality obviously holds, as m,; >0 and 2r—1>r for
r>3. 1
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