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Abstract: A geometric graph G is a simple graph drawn on points
in the plane, in general position, with straightline edges. A geometric
homomorphism from G to H is a vertex map that preserves adjacencies
and crossings. This work proves some basic properties of geometric
homomorphisms and defines the geochromatic number as the minimum
n so that there is a geometric homomorphism from G to a geometric
n-clique. The geochromatic number is related to both the chromatic
number and to the minimum number of plane layers of G. By providing an
infinite family of bipartite geometric graphs, each of which is constructed
of two plane layers, which take on all possible values of geochromatic
number, we show that these relationships do not determine the geochro-
matic number. This article also gives necessary (but not sufficient) and
sufficient (but not necessary) conditions for a geometric graph to have
geochromatic number at most four. As a corollary, we get precise
criteria for a bipartite geometric graph to have geochromatic number
at most four. This article also gives criteria for a geometric graph to
be homomorphic to certain geometric realizations of K2,2 and K3,3.
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1. INTRODUCTION

Much work has been done studying graph homomorphisms. A graph homomorphism
f :G→H is a vertex map that preserves adjacencies (but not necessarily non-
adjacencies). If such a map exists, we write G→H and say “G is homomorphic to H”.
As of this writing, there are 166 research articles and books addressing graph homo-
morphisms. One of the most natural, and widespread, uses for homomorphisms is to
generalize graph colorings—proper colorings, circular colorings, fractional colorings,
oriented and acyclic colorings. A good reference for graph homomorphisms is [2].

This article introduces homomorphisms of geometric graphs. A geometric graph G
is a simple graph drawn in the plane, on points in general position, with straightline
edges. What we care about in a geometric graph is which pairs of vertices are adjacent
and which pairs of edges cross. In particular, two geometric graphs are said to be
isomorphic if there is a bijection between their vertex sets that preserves adjacencies,
non-adjacencies, crossings, and non-crossings.

A natural way to extend the idea of abstract graph homomorphism to the context of
geometric graphs is to define a geometric homomorphism as a vertex map f :G→H
that preserves both adjacencies and crossings (but not necessarily non-adjacencies or
non-crossings). If such a map exists, we write G→H and say “G is (geometrically)
homomorphic to H”. There are many similarities between abstract graph homomor-
phisms and geometric graph homomorphisms, but there are also great contrasts. Results
that are straightforward in abstract graph homomorphism theory can become complex
in geometric graph homomorphism theory.

In abstract graph homomorphism theory (of simple graphs), two vertices cannot
be identified under any homomorphism if and only if they are adjacent. However, in
Section 2 we see that there are various reasons why two vertices might not be able
to be identified under any geometric homomorphism: if they are adjacent, if they are
involved in a common edge crossing, if they are endpoints of an odd-length path each
edge of which is crossed by a common edge, and if they are endpoints of a path of
length two whose edges cross all edges of an odd length cycle.

In abstract graph homomorphism theory (of simple graphs), the only type of graph
that is not homomorphic to a graph on fewer vertices is a complete graph. In geometric
homomorphism theory, there are many graphs other than complete graphs that are not
homomorphic to any geometric graph on fewer vertices. Some examples are given in
Section 3.

In abstract graph homomorphism theory, every graph on n vertices is homomorphic
to Kn. This is not true for geometric graphs. In fact, two different geometric realizations
of the same abstract graph are not necessarily homomorphic to each other. For example,
consider the two geometric realizations of K6 given in Figure 1. The first has a vertex
with all incident edges crossed, the second does not; this can be used to prove that
there is no geometric homomorphism from the first to the second. The second has
more crossings than the first; this can be used to prove that there is no geometric
homomorphism from the second to the first.

One definition for the chromatic number of a graph G, denoted by �(G), is the
smallest integer n so that G→Kn. By the transitivity of homomorphisms, if G→H,
then �(G)≤�(H). We analogously define the geochromatic number of a geometric
graph G, denoted by X(G), to be the smallest integer n so that G→Kn, for some
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FIGURE 1. Homomorphically distinct realizations of K6.

geometric n-clique Kn. We immediately get that G→H implies X(G)≤X(H). However,
there are other parameters whose bounds are preserved by geometric homomorphisms.
Define the thickness of a geometric graph, denoted by �(G), to be the minimum number
of plane layers of G. Note that the thickness of a geometric graph G is not quite
the same as the thickness of the abstract graph G (which is the minimum over all
geometric realizations). We see in Section 2 that G→H implies both �(G)≤�(H) and
�(G)≤�(H). This may lead one to hope that knowledge of �(G) and �(G) would give,
or at least bound, the geochromatic number of G. That this is not the case is shown
in Section 3 by finding an infinite family of bipartite, thickness-2 geometric graphs
whose geochromatic numbers are not bounded. Section 4 delves further into bipartite,
thickness-2 geometric graphs, giving criteria for a geometric graph to be homomorphic
to specific geometric realizations of K2,2 and K3,3. Section 5 provides a set of necessary
conditions and a set of sufficient conditions for a geometric graph to have geochromatic
number at most four. It also gives examples that show that neither set of conditions is
both necessary and sufficient. As a corollary though, we do get precise criteria for a
bipartite geometric graph to have geochromatic number at most four.

2. BASICS

Let G be a geometric graph with underlying (simple) abstract graph G. In particular,
V(G) is a set of points in general position in R2 and an edge uv∈E(G) is the line
segment joining the points u and v. Two edges uv and xy are said to cross if the
interiors of the line segments from u to v and from x to y have non-empty intersection.
This occurs precisely when the vertices u,x,v, and y are (in cyclic order) the vertices
of a convex quadrilateral. See [3, 4] for background on geometric graphs. We call a
geometric graph with no crossings a plane geometric graph.

Recall that a graph isomorphism � :G→H is a vertex bijection � :V(G)→V(H)
such that u and v are adjacent in G if and only if �(u) and �(v) are adjacent in H.
A relaxation of this definition gives us a graph homomorphism f :G→H as a vertex
map f :V(G)→V(H) such that if u and v are adjacent in G, then f (u) and f (v) are
adjacent in H. These concepts can be extended to geometric graphs.

Definition 1. Let G and H be geometric graphs.

1. A geometric isomorphism � :G→H is an isomorphism � :G→H such that edges
uv and xy cross in G if and only if edges �(u)�(v) and �(x)�(y) cross in H.
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FIGURE 2. Two geometric homomorphisms.

2. A geometric homomorphism f :G→H is a homomorphism f :G→H such that if
edges uv and xy cross in G, then edges f (u)f (v) and f (x)f (y) cross in H.

Example 1. The first two graphs in Figure 2 are different geometric realizations of
K4. Up to geometric isomorphism, these are the only realizations of K4. Denote by
̂K4 the thickness-2 realization and by K4 the plane realization. Note that any vertex
bijection from K4 to ̂K4 is a geometric homomorphism but that there is no geometric
homomorphism from ̂K4 to K4. Note also that the vertex map implied by the labelings
of ̂K4 and G in Figure 2 is a geometric homomorphism G→̂K4.

Much of the notation and terminology used here mirrors that used for abstract graph
homomorphisms as found in [2]. We say that G is geometrically homomorphic to H if
there exists a geometric homomorphism from G to H, and denote this by G→H. To
ease terminology, we often drop the term geometric. That is, a homomorphism between
geometric graphs is, by definition, a geometric homomorphism.

It is immediate from the definition that G→H implies G→H. Furthermore, if G
is a plane geometric graph, then any abstract graph homomorphism f :G→H is also
a geometric homomorphism f :G→H. It is easy to see that the property of being
geometrically homomorphic is transitive. More formally, if f :G→H and g :H →K are
geometric homomorphisms, then so is g◦ f :G→K.

The following observations are used throughout this article.

Observation 1. Adjacent vertices cannot be identified by any geometric homomor-
phism.

Observation 2. Endpoints of edges that cross cannot be identified by any geometric
homomorphism.

Proof. Since crossing edges are preserved by geometric homomorphism and in a
geometric graph no pair of edges with a common endpoint can cross, no geometric
homomorphism can identify endpoints of edges that cross. �

Observation 3. The endpoints of an odd-length path cannot be identified by any
geometric homomorphism if there is a single edge crossing all the edges of the path.

Proof. Let G be a geometric graph containing an odd-length path P=v1v2 . . .v2r,
each of whose edges is crossed by edge xy. Further, let f :G→H be a geometric
homomorphism. Since f is a geometric homomorphism, for each i=1, . . . ,2r−1, the
edge f (vi)f (vi+1) crosses f (x)f (y). Thus, f (vi) and f (vi+1) must be on opposite sides of
the line of R2 that contains the edge f (x)f (y). Thus f (v1), f (v3), . . . , f (v2r−1) are on one
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FIGURE 3. Vertices that cannot be identified.

side of this line and f (v2), f (v4), . . . , f (v2r) are on the other side. In particular, f (v1) and
f (v2r) are on opposite sides of the line and therefore cannot be equal. �

Thus in Figure 3, the vertices u and v cannot be identified by any geometric homo-
morphism.

Observation 4. The endpoints of a path of length two cannot be identified by any
geometric homomorphism if its edges cross all edges of an odd-length cycle.

Proof. Let G be a geometric graph containing path P=xyz and cycle C2r+1 =
v1 . . .v2r+1. Assume that together the edges xy and yz cross all edges of C2r+1. Let
f :G→H be a geometric homomorphism and suppose that f (x)= f (z). Then the image
of P in H is a single edge. Recall that the image of an odd-length cycle under
(abstract) homomorphism contains an odd-length cycle. Since f preserves crossings,
edge f (x)f (y)= f (z)f (y) crosses each edge of the image of C2r+1. Thus, as in the
proof of Observation 3, f (v1), f (v3), . . . , f (v2r+1) are on one side of line determined by
f (x)f (y)= f (y)f (z), and f (v2), f (v4), . . . , f (v2r) are on the other. However, since there is an
edge from v1 to v2r+1 in G which crosses either xy or yz (or both), the edge f (v1)f (v2r+1)
must cross f (x)f (y) in H. Therefore, f (v1) must be on the opposite side of the line
f (x)f (y) from f (v2r+1). This contradicts our previous conclusion. Thus f (x) �=f (z). �

Thus in Figure 3, the vertices x and z cannot be identified by any geometric homo-
morphism.

3. THE GEOCHROMATIC NUMBER

Recall that a proper vertex coloring of a graph G (or geometric graph) is a labeling of
the vertices so that adjacent vertices have different labels and that the chromatic number
�(G) is the minimum number of color required for a proper vertex coloring. Also recall
that if f :G→H is an (abstract) graph homomorphism where H is a simple graph, then
for any v∈V(H), the preimage f −1(v) must be an independent set of vertices in G.
More generally, the preimage of any independent vertex set in H is independent in G.
Since a proper vertex coloring of a graph is a partition of the vertices into independent
sets, we can “pull back” any proper vertex coloring of H to a proper vertex coloring
of G. This gives us the well-known result that G→H implies �(G)≤�(H). There is a
similar result for the following coloring invariant.
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Definition 2. An edge coloring of a geometric graph G is called a thickness edge
coloring if no two edges of the same color cross. The thickness of G, denoted by �(G),
is the minimum number of colors required for a thickness edge coloring of G.

Recall that the geometric thickness of an abstract graph G is the minimum �(G)
over all geometric realizations G of G. We do not discuss geometric thickness of
abstract graphs in this article, but one should keep in mind that though these are related
invariants, they are not identical.

Proposition 1. If G→H, then �(G)≤�(H).

Proof. Let f :G→H be a geometric homomorphism. Note that for any edge e∈
E(H), the preimage f −1(e) must be a non-crossing set of edges (plane subgraph) of G.
More generally, the preimage of any plane subgraph of H is a plane subgraph of G.
Since a thickness edge coloring is a partition of the edges of a geometric graph into
plane subgraphs, we can ‘pull back’ a thickness edge coloring of H to a thickness edge
coloring of G. �

Thus we have that if G is homomorphic to H, then �(G)≤�(H) and �(G)≤�(H).
Another natural way to phrase the definition of the chromatic number of a graph G,

�(G), is as the smallest positive integer n such that G→Kn. This extends naturally to
the following.

Definition 3. Let G be a geometric graph. We say that G is n-geocolorable if G→Kn,
for some geometric realization of Kn. The geochromatic number of G, denoted by
X(G), is the smallest positive integer n such that G is n-geocolorable.

As a mnemonic device, X may be thought of as a straightline �.
Note that by Proposition 1, if X(G)=n then for some Kn, G→Kn �⇒�(Gn)≤�(Kn).

That is, the geochromatic number of G must be large enough not only to accommodate
the adjacency relationships among vertices of G, but also to accommodate the crossing
relationships among its edges.

Note that the homomorphic definition of chromatic number of a graph is equivalent
to “the smallest n so that the vertices of G can be colored with n colors so that distinct
colors are given to all vertex pairs corresponding to edges”. Similarly, it is natural to
hope that the definition of X(G) is equivalent to “the smallest integer n so that the vertices
of G can be colored with n colors so that distinct colors are given to all vertex pairs
corresponding to edges and to all vertex quadruples corresponding to crossing edges”.
However, this is not the case. Denote by G the righthand graph in Figure 3. By coloring
x and z with the same color in G and all other vertices distinct colors, we obtain a five
coloring that meets the latter conditions. However, as shown in Observation 4, x and z
cannot be identified under any geometric homomorphism. Further, by Observation 2,
no other vertex pair of G can be identified by any homomorphism since each pair is
involved in a common crossing. We conclude that X(G)=6. Thus, the latter conditions
are weaker than the definition of geochromatic number. In as-yet-unpublished work,
Dean and Margea have shown that the difference in the number of colors necessary
for these two types of colorings can be arbitrarily large [1].

We can classify geometric graphs with low geochromatic number quite easily. Triv-
ially, X(G)=1 if and only if G is a null graph. Since the only geometric realization

Journal of Graph Theory DOI 10.1002/jgt



GEOMETRIC GRAPH HOMOMORPHISMS 103

1 2 3 4 k-2 k-1 k

k+1 k+2 k+3 k+4 2k-2 2k-1 2k

. . .

FIGURE 4. A bipartite, thickness-2 geometric graph with X (G)=2k.

of K2 is plane, if X(G)=2 then G is bipartite and thickness-1 by Proposition 1. The
converse is obvious. Thus, X(G)=2 if and only if G is a bipartite plane geometric
graph. Similarly, since the only geometric realization of K3 is plane, X(G)=3 if and
only if G is a 3-chromatic plane geometric graph. Since deciding whether �(G)≤3 is
an NP-complete problem [5], deciding whether X(G)≤3 is NP-complete also.

Recall from the previous section that there are two geometric realizations of K4, one
is plane, denoted by K4, the other is thickness-2 denoted by ̂K4. Note that G→K4 if
and only if G is a plane geometric graph. Since the plane realization is homomorphic to
the thickness-2 one, it is sufficient for us to study criteria for G→̂K4. By Proposition 1,
X(G)≤4 implies �(G)≤4 and �(G)≤2. However, the converse is false. That is, the
geochromatic number of a 4-colorable, thickness-2 geometric graph is not bounded
above by four. Even the geochromatic number of a bipartite, thickness-2 geometric
graph is not bounded by four. As the theorem below shows, the geochromatic number
of such a graph can be arbitrarily large.

Theorem 1. The geochromatic number of a bipartite, thickness-2 geometric graph
is not bounded.

Proof. In the following, we construct G on 2k vertices as in Figure 4. Place k white
vertices in a “line”. (Recall that a geometric graph cannot have three vertices on the
same line. However, after we finish this construction, we could perturb the vertices
slightly so they are in general position and thereby fulfill the definition for a geometric
graph. This does not affect any of our arguments.) Label these vertices 1, . . . ,k in order.
Place k black vertices below these, also in a line. Label these vertices k+1, . . . ,2k in
order.

For each i=2, . . . ,k−1, connect i to k+ i and k+ i+1 with a solid edge. Also connect
1 to k+2 with a solid edge. Note that none of the solid edges cross each other. Now
connect k+1 to each of 2, . . . ,k with a dashed edge and k to each of k+2, . . . ,2k−1
with a dashed edge. Note that none of the dashed edges cross each other. Thus by
construction, G is bipartite and thickness-2.

Let i and j be a pair of arbitrary white vertices and assume that i<j. Note that the
dashed edge from j to k+1 crosses the solid edge from i to k+ i+1. Since i and j are
involved in a common crossing, by Observation 2 they cannot be identified under any
geometric homomorphism. A similar argument shows that no pair of black vertices can
be identified under any geometric homomorphism.

By Observation 1, since k and k+1 are adjacent, they cannot be identified by
any geometric homomorphism. Note that the dashed edge (k+1)k crosses each solid
edge. Further, every vertex other than k+1 and k is incident to a solid edge. Let i
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be an arbitrary white vertex other than k. By construction, edge i(i+k) crosses edge
(k+1)k. Thus, k+1 cannot be identified with any white vertex under a geometric
homomorphism. The same is true for the vertex k and any black vertex.

Consider a white vertex i and a black vertex j where i �=k and j �=k+1. By construc-
tion, there is an odd-length path P of solid edges between i and j, each edge of which
is crossed by the edge k(k+1). Thus by Observation 3, no geometric homomorphism
can identify i and j.

Thus X(G)≥2k. Since this construction works for any positive integer k≥2, the
geochromatic number of bipartite, thickness-2 geometric graphs is not bounded.

Note that by adding all missing edges to G to create K2k, we can show that G→K2k
and therefore X(G)=2k. Also, notice that this proof can be modified to work for odd
integers by deleting the vertex 2k. All arguments are the same. �

Theorem 1 shows that we need to know more than just the chromatic number and
thickness of a non-plane geometric graph in order to determine its geochromatic number.
Before addressing the question of which geometric graphs have geochromatic number
at most 4, we hone our understanding of geometric homomorphisms in the next section.

4. COMPLETE BIPARTITE GRAPHS

We wish to consider the question of when a geometric graph is homomorphic to a
realization of the complete bipartite graph Km,n. In the simplest case, note that the
only geometric realization of K1,n is a plane geometric graph. It is not hard to show
G→K1,n if and only if G is 2-geocolorable. The next simplest case is K2,2. There are
two geometric realizations. One is a plane geometric graph; the other is a thickness-2
realization which we denote by ̂K2,2. See Figure 5. Since the plane realization is
homomorphic to the thickness-2 one, it is sufficient for us to study criteria for G→̂K2,2.

To obtain necessary and sufficient conditions for G→̂K2,2, we require some defini-
tions.

Definition 4. Let G be a geometric graph.

1. An edge e is called a crossing edge if it crosses another edge. Denote the set of
all crossing edges of G by E×.

2. A vertex v of G is called a crossing vertex if it is incident to a crossing edge.
Otherwise, v is called a non-crossing vertex. Denote the set of all crossing vertices
of G by V×.

21

4 3

FIGURE 5. ̂K2,2.
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3. Let the crossing subgraph, G×, be the geometric subgraph of G with vertex set
V× and edge set E×.

4. Let C1,C2, . . . ,Cm denote the connected components of G×; these are called the
crossing components of G. (Note that being “connected” here is in the abstract
graph theory sense of there being an edge path between every pair of vertices.)

5. Let the induced crossing subgraph, G[V×], be the geometric subgraph induced
by the crossing vertices.

Figure 6 illustrates these definitions on a realization of the Grotzch graph.

Lemma 1. If G→H, then G× →H× and G[V×]→H[V×].

Proof. Assume f :G→H. Since geometric homomorphisms preserve crossing
edges, the images of the crossing vertices of G under f is a subset of the crossing
vertices of H. Hence, we can restrict f appropriately to obtain both f :G× →H× and
f :G[V×]→H[V×]. �

The example in Figure 7 shows that the converse of Lemma 1 is false. Here, we have
two geometric graphs with the same crossing subgraph and induced crossing subgraph.
By identifying the two non-crossing vertices, we can see that G→H. However, since
3=�(H)>�(G)=2 we can see that H �→G.

Definition 5. Given a geometric graph G, its crossing component graph, C×, is the
graph whose vertices correspond to the crossing components C1,C2, . . . ,Cm of G, with
an edge between vertices Ci and Cj if an edge of Ci crosses an edge of Cj in G.

An example of C× is given in Figure 8. Note that C× is an abstract graph and
is not necessarily simple. If a crossing component is not plane, then C× has a loop.
However, in this article we only see crossing component subgraphs in situations where

G G G [V ]xx

FIGURE 6. Crossing subgraph; induced crossing subgraph.

G H

FIGURE 7. G× →H× does not imply G→H.
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FIGURE 8. Crossing subgraph and crossing component graph.

each crossing component is a plane geometric graph. In these cases, C× is a simple
graph.

Definition 6. For any subset of vertices Y ={Ci1 , . . . ,Cir} of the crossing component
graph C×, let GY denote the subgraph of G induced by the vertices in Ci1 ∪·· ·∪Cir .

Note that GY includes any non-crossing edges between vertices in Ci1 ∪·· ·∪Cir .
That is, GY is a subgraph of G[V×], not necessarily of G×.

Theorem 2. A geometric graph G is homomorphic to ̂K2,2 if and only if

1. G is bipartite;
2. each crossing component Ci of G is a plane subgraph;
3. C× is bipartite.

Proof. Assume f :G→̂K2,2 is a geometric homomorphism. Since G is homomor-
phic to ̂K2,2, �(G)≤�(K2,2)=2. Therefore G is bipartite.

Label ̂K2,2 as in Figure 5. Note that the crossing subgraph of ̂K2,2 consists of the
disjoint edges 13 and 24. Since geometric homomorphisms preserve connectivity and
crossings, each crossing component Ci is sent by f to either edge 13 or edge 24.
Further, since the preimage of a plane graph under a geometric homomorphism is a
plane graph, each crossing component Ci is a plane subgraph of G.

Partition the vertices of C× by setting U ={Ci | f (Ci)=13} and V ={Ci | f (Ci)=24}.
Since G is homomorphic to ̂K2,2, if ei ∈Ci crosses ej ∈Cj in G, then without loss
of generality, f (ei)=13 and f (ej)=24. This shows that Ci can only be adjacent to
Cj in C× if Ci and Cj belong to different partites of C×. Thus, we have a proper
bipartition of C×.

For the converse, assume G satisfies Conditions 1, 2, and 3. Since G is bipartite,
we can 2-color all vertices using colors 1 and 2. Since C× is bipartite, we can choose
a bipartition U ={Ci1 , . . . ,Cik} and V ={Cik+1 , . . . ,Cim}. Note that by the definition of
adjacency in C×, all pairs of crossing edges have one edge in GU and one in GV .

Re-color the vertices of G as follows. In GU change the vertices colored 2 to color 3;
in GV change the vertices colored 1 to color 4. Leave the colorings on the non-crossing
vertices unchanged. Define f :G→̂K2,2 so that f takes a vertex of G to its color as
a vertex of ̂K2,2. Note that the vertices originally colored 1 in G are now adjacent to
vertices colored 2 or 3, while the vertices originally colored 2 in G are now adjacent
to vertices colored 1 or 4. These colorings match the labels of the edges in ̂K2,2. Thus,
f preserves adjacencies. Since the edges of GU are colored 13, the edges of GV are

Journal of Graph Theory DOI 10.1002/jgt



GEOMETRIC GRAPH HOMOMORPHISMS 107

1

6

5 4

3

2

FIGURE 9. ̂K3,3.

colored 24, and edges 13 and 24 cross in ̂K2,2, f also preserves crossings. Thus, f is a
geometric homomorphism. �

Below we present a simple extension of Theorem 2 to a realization of K3,3 in which
all crossing components are plane subgraphs. Let ̂K3,3 denote the geometric realization
of K3,3 given in Figure 9. Note that �(̂K3,3)=3 although the thickness of the abstract
graph K3,3 is two.

Theorem 3. A geometric graph G is homomorphic to ̂K3,3 if and only if

1. G is bipartite;
2. each crossing component Ci of G is a plane subgraph;
3. �(C×)≤3.

Proof. Assume f :G→̂K3,3. Since G is homomorphic to ̂K3,3, we get that �(G)≤
�(K3,3)=2. Thus G is bipartite. Each crossing component of G satisfies f (Ci)=14 or
25 or 36. Thus, each crossing component is homomorphic to K2 and is therefore plane.
Use the images of the crossing components to partition the vertices of C× into three
sets, U,V , and W depending on which edge of ̂K3,3 each crossing component is sent
to by f . It is straightforward to show that this is a proper 3-coloring of C×.

For the converse, assume G satisfies Conditions 1, 2, and 3. If C× is bipartite, then by
Theorem 2, G is homomorphic to ̂K2,2, and there is clearly an injective homomorphism
from ̂K2,2 to ̂K3,3. If �(C×)=3, we can use a proper 3-coloring to partition the crossing
components of G into three sets, U,V , and W.

Since G is bipartite, we can 2-color the vertices using the colors 1 and 2. Re-color
the vertices as follows. In GU change vertices colored 2 to color 4; in GV change
vertices colored 1 to color 5; in GW change vertices colored 1 to color 3 and vertices
colored 2 to color 6. Leave unchanged the colors on the non-crossing vertices of G.
We can now define f from G to ̂K3,3 by sending each vertex to its color (as a vertex of
̂K3,3). The remainder of the proof is exactly the same as that of Theorem 2. �

5. GEOCHROMATIC NUMBER FOUR

We now return to the classification of geometric graphs with geochromatic number
at most four. Recall that ̂K4 denotes the thickness-2 geometric realization of K4, with
V(̂K4)={1,2,3,4} and edge 13 crossing edge 24. The geometric graphs in Figure 10
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FIGURE 10. 4-geochromatic graphs can have an arbitrary number of crossings.

show that while there is only one crossing in ̂K4, there is no bound on the number of
crossings in a graph homomorphic to ̂K4.

We noted in Section 3 that X(G)≤4 implies �(G)≤4 and �(G)≤2. The following
theorem provides additional necessary conditions which are similar to those found in
Theorems 2 and 3.

Theorem 4. If G is 4-geocolorable, then:

1. each crossing component Ci is a bipartite plane subgraph of G;
2. there is a proper bipartition (V ,U) of V(C×) so that GU and GV are bipartite

plane subgraphs of G.

Proof. Assume G is 4-geocolorable. Since there exists a homomorphism f :G→̂K4,
by Lemma 1 the map from G× to the crossing subgraph of ̂K4 is also a geometric
homomorphism. Precisely as in the proof of Theorem 2, we can show that each
crossing component is bipartite and plane and, using the partition U ={Ci | f (Ci)=13}
and V ={Ci | f (Ci)=24}, that C× is bipartite. Appropriate restrictions of the original
homomorphism show that GU is homomorphic to the edge 13 and GV is homomorphic
to the edge 24, so GU and GV are bipartite plane subgraphs of G. �

Theorem 4 tells us that Conditions 1 and 2 are necessary for a geometric graph to be
4-geocolorable. However, the geometric graph H in Figure 7 in Section 4 shows that
these conditions are not sufficient. The crossing vertices in H are involved in the single
crossing and therefore by Observation 2, they cannot be identified. Hence, these four
crossing vertices require four colors in a geocoloring. The uncrossed vertex is adjacent
to each of the four crossing vertices and so requires a fifth color. Thus X(H)=5. We
do have the following partial converse to Theorem 4, however.

Theorem 5. If G satisfies Conditions 1 and 2 in Theorem 4, then G[V×] is
4-geocolorable.

Proof. Suppose that G satisfies Conditions 1 and 2 of Theorem 4. Let U,V be
partites for a proper bipartition of V(C×) so that each of GU and GV is bipartite and
plane. This allows us to properly color GU using colors 1 and 3 and GV using colors
2 and 4. Any edge of G[V×] that is not in GU or GV has one vertex in each subgraph
and thus its vertices are assigned different colors. This is a proper 4-coloring of G[V×]
which defines a mapping f :G[V×]→̂K4. It is easy to show that f is a geometric
homomorphism. �

The vertex colorings given in Figure 11 show that greed does not always pay when
geocoloring. Note that Theorem 5 tells us that G[V×]→̂K4. Therefore, we can greedily
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FIGURE 11. Greed does not pay.

geocolor the crossing vertices 1 through 4 accordingly. Up to a permutation of colors,
there is only one way to do this. To extend this to a geocoloring of G, the two adjacent
uncrossed vertices must be colored 5 and 6. This gives G→̂K6, where ̂K6 denotes the
convex 6-clique. However, in the second coloring, we geocolor G[V×] with five colors
and then extend the 5-geocoloring to all of G. This yields G→̂K5, where ̂K5 denotes
the convex 5-clique. Thus, greed in the number of colors used in G[V×] can yield a
less than optimal geocoloring of G.

Corollary 5.1. If G satisfies Conditions 1 and 2 in Theorem 4, then G→̂K4 if and
only if at least one of the 4-geocolorings of G[V×] given by the construction in the
proof of Theorem 5 can be extended to a proper 4-coloring of G.

Corollary 5.2. If G satisfies Conditions 1 and 2 in Theorem 4, then X(G)≤8.

Proof. Suppose G satisfies the Conditions 1 and 2 for being 4-geocolorable given
in Theorem 4. Then by Theorem 5, there is a proper vertex coloring of the crossing
vertices of G with the colors {1,2,3,4} so that if two edges cross in G, they are
colored 13 and 24. The subgraph induced by the non-crossing vertices of G is planar
by definition. Thus there is a proper 4-coloring of the non-crossing vertices of G with
the colors {5,6,7,8}. It is clear that the resulting vertex coloring is a proper 8-coloring.
Let ̂K8 be the convex geometric 8-clique with vertices labeled 1, . . . ,8 in cyclic order.
With this ordering, the edges 13 and 24 cross in ̂K8. The map f :G→̂K8 implied by
this coloring preserves adjacency (since all vertices in ̂K8 are adjacent) and crossings
(since only edges labeled 13 and 24 cross in G). Thus, G→̂K8 and X(G)≤8. �
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This argument generalizes to geometric graphs with larger geochromatic numbers.

Corollary 5.3. If X(G[V×])=n, then X(G)≤n+4.

We have given necessary conditions for a graph to be 4-geocolorable. Below we
provide sufficient conditions.

Theorem 6. If G satisfies the following conditions, then G is 4-geocolorable.

1. Each Ci is a plane subgraph of G.
2. There is a proper bipartition of V(C×) into partites U and V so that

(a) GU and GV are bipartite plane subgraphs, and
(b) there exists a set of non-crossing edges W ={e1, . . . ,em} of G, so that each

ei ∈W has an identified non-crossing vertex denoted by vi (called its initial
vertex) and vertex wi (its terminal vertex) satisfying:

i. the removal of the edges of W removes all odd cycles from G;
ii. no initial vertex vi is equal to any terminal vertex wj;

iii. if vi =vj, then either wi,wj are both non-crossing vertices, or both are in
GU , or both are in GV.

Proof. Let G be as described above. Denote by G
′

the graph we get by removing
the edges of W from G. Since G

′
contains no odd cycles, it is bipartite. Properly 2-color

the vertices of G
′

using the colors 1 and 2.
Since the edges of W are, by definition, incident to non-crossing vertices, these

edges are not contained in G[V×]. Thus G[V×] and its subgraph G× are subgraphs of
G

′
. Thus, they have been properly 2-colored in the bipartite coloring of G

′
. Since GU

and GV are subgraphs of G[V×], they have also been properly 2-colored.
In GU , re-color all vertices colored 1 with color 4; in GV , re-color all vertices colored

2 with color 3. Note that now all vertices of GU are colored 2 or 4 and all vertices
of GV are colored 1 or 3. (All non-crossing vertices are colored 1 or 2.) Since each
of GU and GV is plane and each pair of crossing edges in G has one edge in GU and
the other in GV , this gives a 4-geocoloring of G[V×]. Note that since G satisfies the
conditions of Theorem 6, it satisfies the conditions of Theorem 4. By Corollary 5.1, if
we can extend this 4-geocoloring of G[V×] to a proper 4-coloring of G, we will have
a 4-geocoloring of G.

Our goal is to add the edges of W back into G
′
, one at a time, re-coloring the initial

vertices as necessary, until we have a proper 4-coloring of G. Denote G
′

by G
′
0 and for

each i>0, let G
′
i =G

′
i−1 ∪{ei}.

We begin with edge e1. Recall that v1,w1 are the initial and terminal vertices of e1

and that v1 is a non-crossing vertex. Since v1 is non-crossing, it is in G
′

but not in GU
or GV . Thus the re-coloring in GU and GV did not affect v1, so it is currently colored 1
or 2. Assume the color of v1 is 1. Then in the original 2-coloring of G

′
, all G

′
-neighbors

of v1 were colored 2. Since vertices colored 2 were either left alone or re-colored 3,
the G

′
-neighbors of v1 can only be colored 2 or 3. If the color of w1 is not 1, we can

leave the color on v1 alone, add e1 to G
′
, and have a proper coloring of G

′
1 =G

′ ∪{e1}.
If the color of w1 is 1, re-color v1 with 4, add in the edge e1, and we have a proper
4-coloring of G

′
1. Similarly, if the color of v1 is 2, then its G

′
-neighbors are colored 1
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or 4. In this case, if w1 is not colored 2, we leave the color of v1 unchanged, and if w1
is colored 2, we re-color v1 with 3. In either case, we may add the edge e1 and obtain
a proper 4-coloring of G

′
1.

Assume that we have added the edges e1, . . . ,em−1 in such a way that we end up with
a proper 4-coloring of G

′
m−1. At each step, either the color on the initial vertex vi is

unchanged, or we changed it from 1 to 4 or from 2 to 3. Recall that by Condition 2(b)ii,
no initial vertex is equal to any terminal vertex. Thus in the process of adding in
e1, . . . ,em−1, we never changed a color on a terminal vertex. We next wish to add in
em. There are two cases to consider.

First suppose that vm is not equal to any vj, where j<m. Since by Condition 2(b)ii,
vm is also not equal to any wj, vm is not incident to any of e1, . . . ,em−1. Since the only

additional adjacencies in G
′
m−1 are those provided by e1, . . . ,em−1, the neighbors of vm

in G
′
m−1 are precisely its neighbors in G

′
0 =G

′
. In this case, we can extend the proper

4-coloring on G
′
m−1 to a proper 4-coloring on G

′
m using the same protocol as for v1.

Alternatively, suppose that vm does coincide with one or more previous initial
vertices. That is, suppose vm =vi1 , . . . ,vir where all ij<m. Assume vm was originally

colored 1 in G
′
; then the neighbors of vm in G

′
were originally colored 2. By induction,

vm is currently colored 1 or 4 and its G
′
-neighbors are colored 2 or 3. However, in

G
′
m−1, vm also has neighbors wi1 , . . . ,wir ; the color on these vertices determines whether

we have to re-color vm.
Assume vm is currently colored 1. Since we started with a proper 4-coloring of

Gm−1, none of wi1 , . . . ,wir is colored 1. Further, by Condition 2(b)iii, wi1 , . . . ,wir ,wm

are either all non-crossing vertices, or they are all in GU , or they are all in GV . Thus
the possibilities are:

• wi1 , . . . ,wir are all non-crossing vertices colored 2;
• wi1 , . . . ,wir are all in GU and are colored either 2 or 4;
• wi1 , . . . ,wir are all in GV and are colored 3.

Thus if wm is not colored 1, we can leave vm colored 1. If wm is colored 1, then wm
cannot belong to GU , so neither can any of wi1 , . . . ,wir . This implies that either all of
wi1 , . . . ,wir ,wm are in GV or all are non-crossing. In this situation, vm can be re-colored
4, allowing us to add in edge em.

Next assume vm is colored 4 in Gm−1. This means that in some previous step, its
color was changed because some wij is colored 1. Thus, either all wi1 , . . . ,wir ,wm are
in GV or all of them are non-crossing vertices. Either way, none of wi1 , . . . ,wir ,wm is
colored 4, so we can allow vm to remain colored 4 and add in edge em.

A completely analogous argument works if vm was originally colored 2 in G
′
. Thus,

we can extend the 4-geocoloring of G[V×] to a proper 4-coloring of G. By Corollary 5.1,
G is 4-geocolorable. �

Example 2. The geometric graph in Figure 12 shows that the conditions in
Theorem 6, though sufficient, are not necessary for a graph to be 4-geocolorable. First
we will show that G is homomorphic to ̂K4. We can 4-color the triangulated portion of
this geometric graph because it is plane. It is then easy to label the remaining crossing
vertices so that pairs of crossing edges are labeled 13 and 24.
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FIGURE 12. G→̂K4, but fails the conditions of Theorem 6.

Next, we show that G does not meet the conditions of Theorem 6. If a set W as
described in Theorem 6 exists, it must contain an edge of the central 3-cycle of G.
Without loss of generality, we can assume e1 =xy∈W. Also without loss of generality,
x=v1 and y=w1. The 3-cycle byc must also have an edge in W, say e2. Since e2 must
be incident to a non-crossing vertex, either e2 =by or e2 =cy. In either case, since v2
must be a non-crossing vertex v2 =y. But then w1 =v2, which violates Condition 2(b)ii
of Theorem 6.

Corollary 6.1. If G is a bipartite geometric graph, then G is 4-geocolorable if and
only if G satisfies Conditions 1 and 2 of Theorem 4.

Proof. If X(G)≤4, we get our result by Theorem 4. Conversely, note that Condi-
tion 1 of Theorem 4 implies Condition 1 of Theorem 6. Further, if G is bipartite and
meets Condition 2 of Theorem 4, then since G has no odd-length cycles, it meets
Condition 2 of Theorem 6 by letting W =∅. Hence by Theorem 6, X(G)≤4. �

6. FUTURE WORK

Any question that is interesting for abstract graph homomorphisms is likely to be
interesting for geometric graph homomorphisms, plus a few extra. However, in this
section we restrict our attention to questions connected to the current work.

Question 1. By the example in Figure 11, we know there exists a geometric graph
that meets the conditions of Theorem 4 and that has geochromatic number 5. Further,
we know by Corollary 5.2 that such a geometric graph has geochromatic number at
most 8. What is the largest geochromatic number possible in a geometric graph that
meets the conditions of Theorem 4?

Question 2. In the proof of Theorem 1, we constructed an infinite family of bipartite,
thickness-2 geometric graphs with arbitrarily large geochromatic number. However,
each of these graphs contains a large number of crossings. If we restrict the total
number of crossings in a geometric graph, can we then use the chromatic number and
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thickness to yield, or bound, the geochromatic number? What if we restrict the total
number of edges any single edge can cross?
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