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Abstract

One method which has been used very successfully for finding opti-
mal and provably good solutions for large instances of the Symmetric
Travelling Salesman Problem (ST'SP) is the branch and cut method.
This method requires knowledge of classes of useful valid inequali-
ties for the polytope associated with the ST'SP, as well as efficient
separation routines for these classes of inequalities.

Recently a new class of valid inequalities called the domino-parity
inequalites were introduced for the STSP. An efficient separation
routine is known for these constraints if certain conditions are satis-
fied by the point to be separated. This separation routine has never
been implemented or tested. We present several performance enhance-
ments for this separation routine, and discuss our implementation of
this improved algorithm. We test our implementation and provide
results which we believe demonstrate the practical usefulness of these
constraints and the separation routine for the ST'SP within a branch
and cut framework.

It was also recently shown that a subset of the domino-parity con-
straints, called the twisted comb constraints, are facet-inducing for
the ST'SP. This class is a subset of the domino-parity constraints
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which have one "non-regular” domino. In this paper we show that
these inequalities are not equivalent to other well-known classes of
facet-inducing inequalities for the ST'SP, and thus form a new class
of previously unknown facets for the ST'SP. We also give a character-
ization of the facet-inducing domino-parity constraints with exactly
one non-regular domino.

1 Introduction

Given the complete graph K, = (V, E) on n nodes with edge costs ¢ € RE,
the Symmetric Travelling Salesman Problem (henceforth STSP) is to find
a Hamiltonian cycle (or tour) in K, of minimum cost. This problem has
practical applications in areas such as printed circuit board production, X-
ray crstallography and vehicle routing (see [15]).

For any edge set F' C E and x € R”, let 2(F) denote the sum Y. p ..
For any node set W C V, let §(WW) denote {uv € Flu € W,v ¢ W}. An
integer linear programming (/L P) formulation for the STSP is as follows:

minimize cx (1)

subject to x(6(v)) = 2 for all v eV, (2)
z(6(S)) > 2 forall S C V,3 < |S| <n—3, (3)

0<ua. for all e € F, (4)

r. <1 foralle € F, (5)

x integer. (6)

Equations (2) are called degree constraints, constraints (3) are called sub-
tour elimination constraints, constraints (4) are called non-negativity con-
straints, and constraints (5) are called upper bound constraints. By taking
the convex hull in R¥ of all vectors z satisfying (2) to (6) we obtain the
Symmetric Travelling Salesman Polytope, denoted by STSP(n).

If we drop the integer requirement for (1), we obtain a linear program-
ming (LP) relaxation of the STSP called the Subtour Elimination Problem
(SEP), whose associated polytope is denoted by SEP(n).

The STSP is known to be NP-hard, even in the Euclidean case (see
[14]). One method which has been used very successfully to find optimal
and provably good solutions for large instances of the ST'SP is the branch
and cut method (see [1], [23] and [24]). This method starts with the optimal
solution z* for some LP relaxation of the STSP. Then, while 2* does not
represent a tour, the method iteratively searches for inequalities that are



valid for STSP(n) and are violated by, or “cut off” the current LP solution
x*. If any such inequalities, or “cuts”, are found, they are added to the LP
which is reoptimized. If a point is reached where no such violated inequalities
can be found, a branch operation is applied, as within a standard branch and
bound framework.

The success of the branch and cut method depends on several things. It
requires the knowledge and use of “good” cuts (i.e. one ideally would like to
identify violated inequalities that allow the iterative procedure to reach the
desired integer LP solution using as few iterations as possible). Typically,
classes of inequalities which are known to be facet-inducing for STSP(n)
are used for this purpose. These are inequalities which are necessary in any
LP description of STSP(n), and imply all other valid inequalities for the
problem. Note that all of the constraints (2)-(5) are known to be facet-
inducing for STSP(n) for n > 5 (see [15]).

The success of the branch and cut method also depends on the existence
of efficient methods for finding violated inequalities from our targeted classes
of constraints, if such violations exist. Given a class of valid inequalities, an
exact separation algorithm is one which given a point z*, either finds one or
more violated inequalities from the class or concludes that none exist.

For STSP(n), polynomial-time exact separation algorithms exist for the
subtour elimination constraints (see [21]) and the 2-matching constraints
(see [22]). Recently, much time and effort has been invested in finding
a polynomial-time exact separation for the well-known comb inequalities,
which are used extensively in branch and cut methods for the ST SP. In
[5], Carr provides such an algorithm for combs with a fixed number of teeth.
In [1], heuristics for comb inequality separation are discussed. Note that for
points z* € SEP(n), a comb constraint can be violated by at most 1. In [9],
Fleischer and Tardos give a polynomial-time exact separation algorithm for
the class of such maximally violated comb constraints (i.e. those violated by
1) for points a* € SEP(n) such that the support graph G* for z* is planar
(given a point z* € RF, the support graph G* = (V*, E*) of a* is the sub-
graph of K, induced by the edge set E* = {e € E|z% > 0}). In [4], Caprara,
Fischetti and Letchford give a polynomial-time separation algorithm for the
class of maximally violated mod-2 cuts, which is a class of valid inequalities
for STSP(n) that contain the comb inequalities.

More recently, a new class of valid inequalities for ST.SP(n) called the
domino-parity (DP) constraints was introduced by Letchford in [16]. This
class of inequalities is a subclass of the mod 2 cuts for STSP(n) and is
a superclass of the comb inequalities. Moreover, in his paper, Letchford
also describes an O(n?) exact separation algorithm for these D P-constraints
under the conditions that the point 2* we wish to cut off lies in SEP(n)
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and has a planar support graph. His separation algorithm has the advantage
over the algorithms in [9] and [4] that it does not restrict the separation
to only maximally violated inequalities from the class. However, it is at a
disadvantage over the separation algorithm from [4] for mod-2 cuts in that
his algorithm requires that the current solution 2* being separated must have
a planar support graph, and this will not always be the case.

There has been no previous testing of any of these three exact separa-
tion algorithms, and in particular, of the Letchford separation algorithm for
D P-constraints. Because many inequalities in this class of constraints are
not facet-inducing, some people have questioned their usefulness as cutting
planes. Furthermore, some wonder about the practicality of Letchford’s al-
gorithm, given that many of the solutions x* encountered during branch and
cut have non-planar support graphs.

The main objective of this paper is to investigate the practical useful-
ness of the D P-constraints and the Letchford separation algorithm within a
branch and cut framework for the ST SP. Essentially we want our research
to provide information and results that would help someone decide whether
or not it would be worthwhile to include these constraints as cutting planes
for the ST SP. To this end, we implemented the D P-constraint separation
algorithm and tested it on a number of Euclidean ST'SPs from the ST'SP
test problem library TSPLIB [25]. We believe our results demonstrate the
practical usefulness of both the DP-constraints and Letchford’s separation
routine for solving ST'S Ps within a branch and cut framework. Note that our
implementation contains a number of enhancements to Letchford’s original
algorithm, including an important one that allows the algorithm to often be
used for points that have non-planar support graphs. These enhancements
and our test results are discussed in detail in Section 3.

The second question we investigate in the present paper has to do with
which D P-constraints induce facets for ST SP(n). More specifically, do the
D P-constraints contain other classes of facet-inducing inequalities besides
the comb constraints which are different from other known classes of facet-
inducing constraints for STSP(n)? It turns out that the answer to this
question is yes. Recently in [2], a subclass of the DP-constraints called the
twisted comb constraints were introduced and shown to be facet-inducing for
STSP(n). In Section 4 we show that these twisted comb constraints, along
with a family of constraints equivalent to comb constraints, characterize the
facet-inducing D P-constraints with exactly one "non-regular” domino. This
is an important first step in characterizing exactly which D P-constraints
represent facets for STSP(n). In Section 5 we go on to show that these
twisted comb constraints are not equivalent to other well-known classes of
facet-inducing constraints for STSP(n), thus showing that they provide a

4



new class of facet-inducing inequalities which can be used as cuts in a branch
and cut framework for STSP(n).

In the next section we describe the D P-constraints. The remainder of
this section is devoted to some notation.

Given a graph G = (V| E), we sometimes use the notation E(G) for the
edgeset E' of G and V(@) for the nodeset V of G. For any A C V, let §(A)
represent the set of edges in F with exactly one end in A, and let v(A)
represent the set of edges in F with both ends in A. Given two subsets A
and B of V, we let E(A: B):={uwv € Elu € A,v € B}.

A graph is called complete if every pair of nodes is joined by an edge.
The complete graph on n nodes is denoted by K,. For the remainder of this
paper, we use £ and V to denote the edge set and node set of the complete
graph K, unless otherwise stated.

2 The DP-constraints

Definition A domino is a node subset D = AUB # V', where A and B are
non-empty, disjoint node subsets; that is, # # A, B C V and AN B = (). The
edge set F(A : B) is called the semicut of the domino.

Definition A domino-comb {F; Dy, Ds, ..., D,} consists of an edge subset
F', and an odd number of dominoes D; = A; U B;,7 =1,2,...,p, such that

6(H) = {e € Ele is in an odd number of the edge sets
F, E(Al : Bl),E(AQ : BQ), N .,E(Ap : Bp)}

for some node subset H C V. This set H is known as the handle of the
domino-comb.

Note that given a domino-comb {F; Dy, D,, ..., D,}, we can equivalently
represent it as {H; Dy, D,,...,D,} where H is the handle of the domino-
comb. In this case, F' can be obtained as follows: F' = F} U F5, where

Fy = {e€ Ele € 6(H) and e appears in an even number of the semicuts
E(A;:B;),i=1,2,...,p};

F, = {e€ FEle ¢ 6(H) and e appears in an odd number of the semicuts
E(A;:By),i=1,2,...,p}.



Figure 1: Examples of domino-combs

A domino-comb for which the dominoes are disjoint, p > 3 and F' =
p
S(H)\{U E(A; : B;)} is known as a comb. In this case, each edge e € 6(H)
=1

is in exactly one of the sets F, E(A, : By),E(Ay : By),...,E(A, : B,). In
general domino-combs however, the dominoes need not be disjoint. Moreover,
the edges in the semicut of a domino E(A; : B;) need not be contained in
6(H); that is, it may not be the case that A; = D; N H and B; = D;\H, as is
true with combs. This can happen either when a semicut edge e occurs in an
even number of semicuts (since dominoes need not be disjoint, their semicuts
can intersect nontrivially), or when a copy of e exists in F. Some examples
of domino-combs are illustrated in Figure 1. Rather than depict dominoes
and the edges of F', we show dominoes and the implicitly defined handle
H (which is shaded). In the figure, a dotted line in a domino D; is used
to separate A; and B;. We use this convention for drawing domino-combs
throughout the paper.

Definition For a domino-comb {F; Dy, ..., D,}, the corresponding
DP-constraint is

Xp:x(é(Di)) + XP:I(E(Ai :By))+x(F)>3p+ 1. (7)

In the case of combs, (7) gives the well-known comb constraints for the
STSP:

Xp:x(é(Di)) +x(6(H)) > 3p+1 (8)

=1

The comb constraints were shown to be facet-inducing for ST SP(n) in [11]
and [12].
Note that (7) can also be written as



(E(A;: By)+ > x(E(4; : Cy)+ > x(E(B; : Cy)) +x(F) > 3p+1 (9)

/4 /4 14
=1 =1 =1

1

where C; = V\D; for i = 1,2,...,p. This form of the DP-constraint has the
advantage that we can view each domino as a tripartition A; U B; UC; of the
nodes of V' without specifying which pair of these sets form the domino.

3 Testing the Usefulness of D P-constraints
and the Separation Algorithm

As mentioned earlier, one of the main objectives of this paper is to investi-
gate the usefulness of the D P-constraints as cuts in a branch and cut set-
ting, as well as the practicality of Letchford’s separation algorithm for finding
these cuts. We would like to emphasize here that our goal was not to de-
sign a tool to solve ST'SPs faster and better than everyone else, but rather
to simply help someone decide whether or not it is worthwhile to include
D P-constraints as one of the classes of inequalities considered for cuts when
implementing a branch and cut method for the ST'SP. Thus in our testing
we concentrated on the cut phase of the branch and cut method, iteratively
looking for violated D P-constraints using only Letchford’s separation algo-
rithm, adding these cuts to the current L P and reoptimizing. To this end, we
developed an implementation of Letchford’s separation algorithm in which
we included a number of important enhancements and changes to the overall
process. These are discussed in Section 3.1.

The details and results of our testing are discussed in Section 3.2. This
testing process was greatly improved and simplified for us by making use
of CONCORDE, which is a very successful and powerful software package
developed by Applegate, Bixby, Cook and Chvatal, designed specifically for
applying the branch and cut method to the ST'SP. Among other things,
CONCORDE allows the user to iteratively add his or her own set of violated
constraints (contained in a file) at each stage of the cutting process.

3.1 Enhancements Made in the Implementation

In order to facilitate the practical usefulness of Letchford’s D P-constraint
separation routine and enhance our ability to successfully use CONCORDE
in the testing process, we added some enhancements to our implementation
of this separation algorithm; they are described next.
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Figure 2: A shrinking example

3.1.1 Shrinking to Obtain Planarity

As discussed earlier, in order to use the D P-constraint separation algorithm
on the current LP solution x*, we must have that the corresponding support
graph G* = (V* E*) is planar. Although this will automatically be the
case when x* is the optimal solution for the subtour problem for Fuclidean
STSPs (see [10]), it is certainly not the case in general, and we frequently
encountered non-planar support graphs during our testing. Fortunately, we
found that it is often possible to make use of the D P-constraint separation
algorithm even if the support graph G* for our current solution x* is non-
planar. The method we used is based on the idea of shrinking portions of G*
in order to obtain a planar graph G’ such that the violated D P-constraints
found using the new graph G’ correspond to violated D P-constraints for our
original point z*. Although this method is not guaranteed to find a violated
D P-constraint which cuts x* off if one exists, we found that we were often
able to use it to successfully generate violated D P-constraints in our testing.
We now explain the details of this process.

Definition Let G = (V E) be a weighted graph with edge weights w € RE
and let U C V be a node subset of V. Let G be obtained from G by replacing
U and all edges in y(U) by a single node u" and for each v € V\ U, replacing
all edges F(U : {v}) by a single edge u'v whose weight is the sum of the
weights (w, : e € E(U : {v})). Then we say that G’ was obtained from G by
shrinking the node set U and we call u’ the pseudonode obtained by shrinking
node set U. Figure 2 shows an example of this shrinking process, where
U= {Ul, Uo, U3, Uyg, U5}.

W,
V2

2



If we let G be the support graph G* = (V* E*) of a point x*, we can
use (z*. : e € E*) as the weights for G*, and when we shrink a node set U
to obtain G’ = (V', E'), we can associate a point 2/ € REEWD (ie. ' is
indexed by the edge set of the complete graph induced by V') with G, where

e fore e E'
¢ 10, otherwise.

Clearly G’ is the support graph of 2’, and we say that z' is the point
obtained from x* by shrinking U. The following very useful proposition shows
that we can generate violated D P-constraints for our original point x* by
looking instead for D P-constraints which are violated by x'.

Proposition 3.1 Given a point x* € RPU) and its support graph G* =
(V*, E*) and given U C V* | let the graph G' = (V', E") and point =" be 0b-
tained by shrinking node set U in G*. Let {F'; D}, Dy, ..., D)} be a domino-
comb in Ky for which the corresponding DP-constraint is violated by a'.
Then, this domino-comb can be used to construct a corresponding domino-
comb in I, for which the related DP-constraint is violated by x*.

Proof Let «' be the pseudonode in G’ corresponding to U, and let H' be
the handle of the domino-comb {F'; D}, Dy, ..., D,}. Construct sets [ C
E(K,), Df C V(K,), i = 1,2,...,p as follows: Let F* be the edge set
obtained from F’ by replacing each edge u'v € F' by the edge set E(U : {v})
in K,,, and for i = 1,2,...,p, let D! be the node set in K, obtained from D!
by replacing any occurrence of u' by U.

Let K represent the set of all edges ¢ € E(K,) such that e is in an
odd number of the edge sets ™, E(A} : BY), E(A5 : By),...,E(As : BY)}.
We first show that {F™*; Dy, D, ..., Dy} is a domino-comb by showing that
K = 6(H*) for some H* C V*.

Consider the relationship between the two domino-combs. Clearly K =
{wv € 6(H")|w # u'} U {uv € E(K,)lu € Uu'v € 6(H")}. Thus, K = 6(H*)
for H* obtained from H' by replacing any occurrence of u' by U.

Next we wish to show that the D P-constraint corresponding to the domino-
comb {F*; Dy, D}, ..., D;} is violated by x*. To see this, recall that

yv *

;| 2aM(EU {v})), Hy=u,veV'\{u}
oo = Lys y,U%UI,UJ

and thus the right-hand side of the DP-constraints for the domino-combs
{F* Dy, Ds,...,Dy} and {F'; Dy, Dy, ..., D)} are identical. The result fol-
lows. O



Note that if we start with some point 2* in SEP(n) and shrink some
node set U to obtain point 2’, this new point may no longer satisfy the degree
constraints (2) or the upper bound constraints (5) for the SEP. However,
although it is not first presented as such in [16], Letchford does point out
in this same paper that the separation algorithm will also work when the
solution vector 2’ only satisfies the non-negativity (4) and subtour elimination
constraints (3) for all S € V', as long as the support graph of 2’ is planar.
Thus it follows that if G’ is planar, we can use the separation algorithm
to look for D P-constraints violated by ', and then use these constraints to
construct violated D P-constraints for x*. This leads to the following method

for handling situations where our current L P solution x* has a support graph
G* = (V*, E*) which is non-planar:

Step 1 Look for disjoint node subsets Uy, Us,,..., Uy, where U; C V* for
i=1,2,...k, such that the graph G' = (V' E’) obtained by shrinking each
of the sets U; is planar. Let 2’ be the corresponding point obtained by this
shrinking.

Step 2 Use the separation algorithm to look for D P-constraints violated by

xl.
Step 3 Use the method described in Proposition 3.1 to transform each of
the violated constraints found in Step 2 into violated D P-constraints for x*.

[t is important to note that this method does not provide an exact sepa-
ration routine for x*. That is, it is possible to have a violated D P-constraint
for x* with no corresponding violated D P-constraint for 2’ (an example of
this is given in [26]). Thus the above method is not guaranteed to find a vio-
lated D P-constraint for x* if one exists. However, we can clearly increase the
method’s effectiveness as a heuristic by finding the sets Uy, Us, . . ., Uy for Step
1 which shrink as little of the graph G* as possible. So ideally we would like
to solve the following problem for Step 1: Given a graph G* = (V*, E*), find
disjoint node subsets Uy, Us, ..., Uy, where U; C V* for i = 1,2,...k, such
that the graph G' = (V', E') obtained by shrinking these sets is planar, and
|[V*|—]V"'| is minimized. Currently, we do not know of an efficient method for
solving this problem in general, but there are several good heuristics which
can be used (see [26]).

3.1.2 Finding a “CONCORDE FRIENDLY” Equivalent Form

One of the requirements of CONCORDE is that any constraint added as a
cut must be in a reasonable closed-set form, i.e. must be in the form
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for node subsets Sy,S5,..., Sk, where k is not too large. Thus in order to
make use of CONCORDE for our testing, it was necessary to first find the
closed-set form for general D P-constraints, and below we describe how this
can be done. Unfortunately, this closed-set form can sometimes involve a very
large number of node subsets, which again is unacceptable for CONCORDE.
In such situations we found that it was often possible to “flip compartments”
in dominoes to obtain a much nicer closed-set form of the inequality involving
drastically fewer node subsets. This process is also described below.

Definition Given a domino-comb {F; Dy, D,,...,D,} with handle H, we
call one of its dominoes Dy, reqular if

(i) E(Ay : By) C 6(H);
(ii) E(Ag : By) NE(A;:B;)=0forall 1 <j<p,j#Fk;
(iii) E(Ay: Bp)Né(D;)=0forall j=1,2,...,p.
A domino that is not regular is called non-regular.

It is useful to understand the properties satisfied by regular dominoes,
which are described in Proposition 3.2.

Proposition 3.2 Let {F; Dy, D,,...,D,} be a domino-comb, where D; =
A;UB;, i=1,2,...,D,. Then, the following properties hold:

(a) If a regular domino Dy, intersects another domino D;, then Dy must be
entirely inside either A; or B;.

(b) All regular dominoes are disjoint from each other.

(c) All regular dominoes are minimal (i.e. they contain no other domi-
noes).

Proof Consider property (a). If regular Dy has some nodes both inside
and outside another domino D;, then Dj would not satisfy condition (iii)
for regular dominoes. If Dj has some some nodes in A; and some nodes in
B, then Dy does not satisfy condition (ii) for regular dominoes. The result
follows.
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Consider property (b). By (a), if a regular domino D, intersects a regular
domino D,, then D, must lie entirely inside A, or B,. but if that is the case,
one of either Dy or D, must not satisfy condition (i) for regular dominoes.
Hence property (b) holds.

Finally, property (c) follows from property (a). O

Note that if we have a domino-comb for which all dominoes are regular,
then we have a comb, and the corresponding D P-constraint (8) is already in
the required closed-set form.

To obtain a closed-set form for general domino-combs, we begin by parti-
tioning the dominoes into regular and non-regular. Without loss of generality,
let Dy, Ds, ..., D, be the regular dominoes and let D, 1, D15, ..., D, be the
non-regular ones for the domino-comb. Then by using the fact that

2(6(D;y)) + x(E(A; = By)) = w(6(4;)) + x(8(B;)) — #(E(A; : B)))

for each non-regular domino D;, we can rewrite the D P-constraint (7) as

éx(é(Di))Jr £ e+ 4_Xp:1x(6(Bi)) + éx(E(Ai . BY))
b e Y alB(A:B) 3+l (10)

Now consider the corresponding handle H. By definition, the edges of 6(H)
can be partitioned into the following three sets:

(i) 0 E(A;: B;) (i.e. the semicut edges for regular dominoes);
=1

(i) Fi;

(i) K :={e € Ele € 6(H) and e is in an odd number of the non-regular
semicuts F(A; : B;),i=7r+1,...,p}.

Applying this to (10) gives

S e(6(D))+  w6(H)+ ¥ x(6(A)+ ¥ x(8(B:))

i=1 t=r+1 t=r+1
~ (£ @B B) — o) +a(K) 2 3p+ 1. (1)
1=r—+
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We now concentrate on the term

zpj 2(B(A; : By)) — a(Fy) + a(K) (12)

1=r+1

on the left-hand side of (11), as this is the only part of (11) which does not
adhere to the closed-set form. By definition, because all regular dominoes
D; have E(A; : B;) C 6(H), we have

F,= {e€ Ele¢ 6(H) and e is in an odd number of non-regular

domino semicuts}. (13)

For all e € E, let ¢, represent the number of non-regular domino semicuts
containing edge e. Using (13), we then have that (12) can be written as

> (pexe e € E,pe even )+ Y ((¢e — 1)ae:e € E, ¢ odd ,e ¢ 6(H))
+ Y((¢e+1)ze:e € E ¢, 0dd ,e € 6(H))(14)

Clearly, for all e € E, the coefficient of x, in (14) is a non-negative, even
integer, so we can represent (12) as

> 2a.x.

ecE

where, for all e € E, a. is a non-negative integer.
Substituting this into (11) gives

2 @D+ w(6(H)+ D x(8(A)
+ fﬂx(é(Bi))— > 20w, > 3p+ 1. (15)

Now consider any edge e = uv. By adding the degree constraints (2) for u
and v, we obtain

ro({u,v}) + 2z, = 4.
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Thus, if we add a. times the degree constraint for nodes u and v for every edge
e = uv € F to the DP-constraint (15), we obtain the equivalent constraint

r

S e(6(D) + 2 (5(H) + 3 w(6(A) + 3. #(5(By)

=1 i=r+1 1=r+1

+ 3 ar(6({u,v})) >3p+1+4> a, (16)
wvEE ecl
which is the required closed-set form.

Although constraint (16) is in closed-set form, it has one drawback. In the
case that there are non-regular dominoes, this closed-set form may contain
a very large number of node subsets of size two. In some cases this meant
that the DP-constraints we generated in our testing were still not accepted
by CONCORDE, even after being converted into form (16).

Fortunately we were able to overcome this problem. It turns out that
it is possible to efficiently maximize the number of dominoes which can be
considered regular for a given D P-constraint, thereby minimizing the number
of node subsets in the closed-set form. This process is based on the idea of
switching the compartments of a domino, as defined below.

Definition Let D = AU B be a domino, and let C'= V\D. Sets A, B and
C form a tripartition of the nodes V' of K,,, which we call the compartments
of D. We call A and B the inside compartments of D, and C the outside
compartment.

Definition Given a domino D = AU B, we say dominoes D' = AU C and
D" = BUC are obtained by switching the compartments of D.

Definition Given sets A and B, the symmetric difference of A and B, de-
noted by AAB, is the set (A\B)U (B\A).

Theorem 3.3 below (which also appears in [2]) shows that we can essentially
regard any two compartments of each domino as the inside compartments,
i.e. switching compartments in any domino of a domino-comb results in
another domino-comb which generates the same D P-constraint, albeit one
with a somewhat different handle.

Theorem 3.3 Let {F;Dy,D,,...,D,}, D, = A;UB;, be a domino-comb and
let H be the associated handle. Let Cy = V\D; and let
D} = Ay UCy. Then, {F;D},D,,...,D,} is also a domino-comb and the
associated handle is H' = HAA,. Furthermore, the DP-constraints corre-
sponding to {F; Dy, Dy, ..., Dy} and {F; D}, D,,...,D,} are the same con-
straint.
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Proof For each e € FE, let pu. represent the number of the sets
F.E(A, : By),E(Ay : By),...,E(A, : B,) which contain e and let . rep-
resent the number of the sets F, E(A; : C)),E(Ay : By),...,E(A, : B,)
which contain e. Thus 6(H) = {e|u. is odd}, and we wish to show that
O(H') = {e|y. is odd}, where H' = HAA;.

Since the only difference in the sets for p and g’ is the replacement of
E(A;: By) by E(A; : Cy) and these two sets are disjoint, we have that

He+1, GEE(Alicl)
[Lé: [Le—l, GEE(AllBl)
Lle, otherwise.

Thus, the parities of p. and gl are different only for edges e in E(A; :
By)UE(A; : C1) = 6(Ay). Tt follows that !, is odd for edges in 6(H) but not
in 6(A;), and edges in 6(A;) but not in 6(H). Thus, {e € E : p, is odd} =
6(HAA,), as required.

Note that if we consider our DP-constraint in form (9), it is clear that
both the domino-combs {F; Dy, D,,...,D,} and {F; D}, D,,...,D,} gener-
ate the same DP-constraint. O

To illustrate Theorem 3.3 and the impact it can have on the number of
regular dominoes for a domino-comb, consider the comb {H; Dy, Dy, D3} in
Ky with handle H = {2,4,6,7} and dominoes Dy = {1}U{2}, D, = {3}U{4}
and D3 = {5} U {6}, which is shown in Figure 3(a). For Dy, let A; = {1},
By = {2} and C; = {3,4,...,8}. Then by switching the compartments
for domino D;, we obtain the domino-combs shown in Figure 3(b) and (c),
where respectively we replace Dy by D} = A; UC} and D = B, UC). These
all generate the same D P-constraint. However, the domino-comb in (a) has
three regular dominoes, whereas the domino-combs in (b) and (c) each have
two, since D] and DY are both non-regular.

To improve our closed-set form (16) for CONCORDE, we would like to
decide which two compartments should be the inside compartments for each
domino in order to maximize the number of dominoes which are regular.
Given that there are 37 possible domino-combs obtainable through compart-
ment switching for a particular D P-constraint with p dominoes, a brute-force
approach to finding the one with the maximum number of regular dominoes
would in general not be efficient. However, Theorem 3.4 and Corollary 3.5
provide us with an efficient method for solving this problem.
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() (b) ()

Figure 3: Three equivalent domino-comb constraints

Theorem 3.4 Let {F;Dy,D,,...,D,} be a domino-comb with handle H,
where D; = A; U B; and C; = V\D; for i = 1,2,...,p. For each edge
e € E, let i, be the number of the sets F, E(A; : B;), E(A; : C;), E(B; : C;),
1 =1,2,...,p which contain edge e. Then domino Dy, is reqular if and only
if i, =1 for all e € E(Ay, : By).

Proof Suppose Dy is regular. Then recall that, by definition we have
(i) E(Ag: By) C 6(H);
(ii) E(Ag : By) NE(A;: B;)=0forall 1 <j<p,j#k;

(iii) E(Ay: Bp)Né(D;)=0forall j=1,2,...,p.

Properties (i7) and (ii7) imply that any edge e € E(Ay : By) is in only
one of the edge sets F(A; : B;), E(A; : C}),E(B; : C;),i =1,2,...,p, namely
the set E(Ay, : By). Thus, property (i) implies E(A : Bi)NF = . Tt follows
that @, =1 for all e € E(Ay : By).

Now, suppose 7i, = 1 for all e € E(Ay : By). Then clearly properties
(i7) and (i77) hold for Dy. Also, we must have that F(Ay : By) N F = 0. It
follows that property (i) holds for Dy as well, and thus D, is regular. O

Note that if we switch the compartments for some domino D; in a domino-
comb {F;Dy,D,,...,D,}, the value of 7i,,e € E, in Theorem 3.4 does not
change. Thus, we have the following corollary to Theorem 3.4.

Corollary 3.5 Let {F;D;,D,,...,D,} be a domino-comb and let Dy, be a
reqular domino. Then, Dy is also reqular for the domino-comb obtained by
switching compartments in domino Dj,j # k.
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Theorem 3.4 and Corollary 3.5 provide us with an efficient method for
maximizing the number of regular dominoes in a domino-comb, thus making
the closed-set form (16) much more likely to be accepted by CONCORDE.

Given the domino-comb {F; Dy, D,,...,D,}, we begin by calculating
.,e € FE as defined in Theorem 3.4. Then for each domino
Dy = E(Ay, : By),k =1,2,...,p, we check if I, = 1 in the semicuts cor-
responding to any of our three choices for pairs of inside compartments, i.e.
E(Ay : By), E(Ag : Cy) or E(By : Cy), where Cy, = V\Dy. If so, we choose
the corresponding pair of sets from A, By and C} to be inside the domino.
This may involve switching compartments in domino Dy, but we know from
Theorem 3.4 that this does not affect the corresponding D P-constraint, and
we know from Corollary 3.5 that this does not affect the regular status of
other dominoes in the domino-comb.

Note that after maximizing the number of regular dominoes for our
domino-comb, we may still be able to improve on our closed-set form (16) for
our D P-constraint. We call a domino almost-regular if it satisfies properties
(1) and (7i) for regular dominoes, but not property (iii). It can easily be
verified that the derivation of the closed-set form (16) is still valid if we let
Dy, Dy,...,D, in (16) represent the regular and almost-regular dominoes.
Thus in our testing, after maximizing the number of regular dominoes for
our domino-comb, we did a final check of the non-regular dominoes to see
if they happened to be almost-regular, in which case we adjusted our set
Dy, ..., D, accordingly.

3.1.3 Adding All Violated DP-constraints Found

A final variation that we made in the Letchford algorithm deals with which
D P-constraints are identified as violated. In the final step of the algorithm,
one looks for a minimum weight odd cycle in an auxillary graph. If this cycle
has weight less than 1, then this corresponds to a violated D P-constraint, in
fact the one which is violated by the most, and it is this single constraint that
is identified by the algorithm. As is pointed out in the paper [16], all odd
cycles in this auxillary graph of weight less than 1 correspond to a violated
D P-constraint. In our implementation of the algorithm, instead of only
identifying just the most-violated D P-constraint, we instead identified the
minimum cost odd cycle containing node v for every node v € V', and then
kept all the unique D P-constraints from these which corresponded to cycles
of weight less than 1. Thus we identified a set of violated D P-constraints
rather than just one. Our thinking behind this is that the more violated
D P-constraints we generate at each iteration, the faster we will (hopefully)
be able to reach an optimal solution.
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3.2 Testing Details and Results

We implemented Letchford’s D P-constraint separation algorithm along with
the enhancements discussed in Section 3.1 in a program called
DP-CUTFINDER. A complete description of the details of this implementa-
tion can be found in [26].

Recall that the points x* to which we apply DP-CUTFINDER must
satisfy the subtour elimination constraints (3) and the non-negativity con-
straints (4) , although by the enhancement described in Section 3.1.1 they do
not need to have planar support graphs. We chose to satisfy these constraints
by ensuring that we stayed inside the polytope SEP(n). An overview of our
initial testing process, which we call test T1, is as follows:

Start with LP = 0;
Find the optimal solution z* for the SEP;
Repeat
Use DP-CUTFINDER to look for DP-constraints which violate x*;
Add these constraints to the current LP and reoptimize over the
LP constraints and the SEP constraints (2)-(5) to obtain a new
Until one of the stopping criteria is encountered.

There are three possible stopping criteria for our process:

(i) The current z* is integral (which means that 2* is an optimal solution
for the STSP).

(ii)) The current x* has a non-planar support graph which was not made
planar via the node shrinking heurisitics.

(iii) No violated DP-constraints were found by DP-CUTFINDER for x*.

Note that if stopping criterion (iii) occurs, it implies that there exist no
D P-constraints violated by z* only in the case that x* has a planar support
graph.

In the above process we used CONCORDE to find the initial optimal
solution for the S F P and for the reoptimization step. Our test data consisted
of 46 two-dimensional Fuclidean ST'SP instances obtained from TSPLIB
[25], a public problem test library for the ST'SP. These 46 problems represent
all of the two-dimensional Euclidean problems of size at most 1060 listed in
TSPLIB, except for berlin52 and pr107. Both of these were excluded from
testing because their optimal SEP solutions are ST'SP tours. For all 46
problems the optimal ST'SP solutions are known. Note that when we refer
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to these problems in the test results we use the names given in TSPLIB,
which indicate the size of the problem as well as the initials of the creator(s)
of the problem.

The first set of results for test T1 are summarized in Table 1, where we
compare our results with two other cutting algorithm results we obtained
using CONCORDE. CONCORDE does not require files of cuts to be pro-
vided from outside the package, as it already contains many different sep-
aration routines (exact and heuristic) for different classes of facet-inducing
inequalities for STSP(n). The user can select which of these separation rou-
tines are turned on and active during the cutting process. In Table 1, DP-
CUTFINDER refers to the results we obtain using only DP-CUTFINDER in
the method we described, CONCI1 refers to the results obtained by running
CONCORDE (cutting only, no branching) with all of its internal separation
algorithms related to comb constraints and subtour elimination constraints
activated, and CONC2 refers to the results obtained by activating the de-
fault options for CONCORDE (again with no branching). Note that for the
final point x* found by each of DP-CUTFINDER, CONC1 and CONC2, cx*
provides a lower bound on the value of an optimal solution for the ST'SP,
and this lower bound is as good as or better (i.e. bigger) than that provided
by optimizing over SEP(n). As in [15], the measure we used for comparison
of the lower bounds for the three tests is the ratio

R = (100« (LB — SUBT)/(TOUR — SUBT)),

where LB is the lower bound cx*, SUBT is the optimal solution value for
the SEP and TOUR is the optimal tour length for the STSP instance
as recorded in TSPLIB. Observe that if R = 100% then the lower bound
obtained is optimal. The ratio R reveals what percentage of the gap between
the SEP optimal and the ST'SP optimal is covered by the lower bound. As
can be seen by the results shown in Table 1, on average we covered 95.1% of
the gap with DP-CUTFINDER, while CONC1 and CONC2 covered 93.6%
and 92.1% of the gap respectively. Thus, on average, using just the DP-
constraints and the enhanced Letchford separation algorithm routine did
slightly better than using the methods of CONCORDE for this problem set.
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Table 1: Lower Bound Comparison

Probleml R value for DP- | R value for | R value for
Name CUTFINDER CONC1 CONC2
eil51 100 100 100
eil51 100 100 100
st70 100 100 100
eil76 100 100 100
pr76 71.2 71.2 100
rat99 100 100 100
kroA100 | 100 98.5 100
kroB100 | 100 100 100
kroC100 | 100 100 100
kroD100 | 100 100 96.9
kroE100 | 100 100 85.6
rd100 100 100 100
eil101 100 100 100
lin105 100 100 100
pri24 97.9 94.5 98.4
bierl27 | 100 100 100
ch130 100 100 100
prl136 93.2 88.5 69.3
prl44 100 100 100
ch150 100 100 92.4
kroA150 | 98.5 94.5 96.2
kroB150 | 100 99.4 96.1
pri52 100 100 29.8
uls9 100 100 100
rat195 85.6 82.7 81.7
d198 96.3 83.8 47.9
kroA200 | 100 100 100
kroB200 | 100 100 95.6
ts225 46.7 59.9 100
tsp225 93.8 92.9 97.0
pr226 100 100 100
gil262 100 95.7 95.1
pr264 100 100 100
a280 92.3 89.7 92.3

continued on next page
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Table 1: continued

Name R wvalue for DP-| R value for | R value for
CUTFINDER CONC1 CONC2
pr299 95.3 92.5 99.4
lin318 100 80.8 81.7
rd400 85.4 82.6 77.8
pr439 64.9 83.8 86.3
pch442 | 89.9 86.7 90.1
d493 99.2 86.6 86.9
ub74 100 97.6 94.5
ratb75 93.3 86.1 86.3
p654 100 100 100
d657 87.1 85.9 91.3
u724 95.0 85.3 85.1
rat783 100 96.1 96.8
ul060 90.4 90.8 87.6

A more detailed look at the results found by DP-CUTFINDER for test
T1 can be seen in Table 2. The first two columns contain the problem name
and the number of times CONCORDE was invoked for the reoptimization
step. The problems whose names are shown in italics (30 out of the 46)
are those for which we reached optimality. The third column refers to the
iteration(s) where the reoptimization step yielded a solution x* with a non-
planar support graph, and node shrinking heuristics had to be applied before
searching for violated D P-constraints. The fourth column contains the total
number of D P-constraints added to the problem, reported as two numbers;
the first number refers to the D P-constraints that were comb constraints,
while the second number is the number of D P-constraints that were not
comb constraints. In the final column we report the total number of the added
D P-constraints which were tight for the final LP solution z* (i.e. satisfied at
equality by x*), again separated into those that were comb constraints and
those that were not. These represent the D P-constraints that are required
and necessary for the final LP and solution x*.
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Table 2: DP-CUTFINDER Results

Name | # Iter | Iter Non- | # DP | # Tight DP
CONC | planar (C/NonC)| (C/NonC)
eil51 7 — (40/10) (32/7)
st70 4 — (15/3) (9/2)
el 76 5 — (19/1) (8/0)
pr76 5 4.5 (31/13) (22/7)
rat99 | 7 — (19/5) (11/1)
kroA100| 7 — (23/9) (22/9)
kroB100| 9 — (45/6) (14/3)
kroC100| 5 — (28/2) (8/2)
kroD100| 4 (27/4) (26/4)
kroE100| 10 5,6,7,8 (87/29) (69/22)
rd100 3 — (17/4) (15/4)
el101 3 — (17/5) (15/4)
lin105 |2 — (1/0) (1/-)
prizd | 11 34591011 | (12/0) (12/-)
bier127 | 7 3,6 (51/11) (42/8)
ch130 9 — (60/11) (52/11)
pri136 10 3,6,7 (130/30) (94/8)
prij/ 3 — (18/10) (13/10)
ch150 7 — (91/15) (74/9)
kroA150| 10 — (98/31) (65/17)
kroB150| 8 — (90/17) (84/14)
pri52 5 — (37/8) (31/6)
ul59 5 — (14/0) (9/-)
rat195 | 11 3,5,10,11 (196/69) (44/13)
diog | 11 — (158/41) | (82/20)
kroA200| 10 — (163/88) (133/83)
kroB200 | 7 — (83/12) (69/8)
t5225 6 3,4,5.6 (51/4) (10/0)
tsp225 | 13 — (261/94) (221/83)
pr226 4 — (14/2) (14/2)
qil262 15 3,5-9,11,13-15 | (310/201) | (34/16)
pr26/ 5 — (23/3) (23/3)
a280 | 10 — (123/31) | (71/23)
pr299 | 14 5-14 (220/126) | (44/16)

continued on next page
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Table 2: continued

Name | # Iter | Iter Non- | # DP | # Tight DP
CONC | planar (C/NonC)| (C/NonC)
lin318 | 8 3,4,5,6 (157/113) | (104/83)
rd400 16 4,5,6,7,9,11-16 | (425/285) | (247/208)
pr439 6 2,3,4,6 (131/35) (16/2)
pch442 | 16 4.5,6 (265/40) (133/16)
d493 45 34,40 (1505/800) | (408/120)
u574 12 9,11 (507/393) | (464/365)
ratb75 | 16 — (711/406) | (495/259)
p654 |3 — (18/8) (6/0)
d657 12 5,6,8-12 (685/327) | (364/172)
u724 16 5,7-11,13-16 (892/591) | (602/356)
rat783 | 13 11,12 (752/249) | (490/102)
11060 16 8,9,15,16 (674/218) | (144/10)

In looking at the results in column 3 of Table 2, we can see that for just
under half of the problems, non-planar support graphs were encountered
along the way. This demonstrates the importance of our enhancement to
Letchford’s algorithm which allows us to shrink in order to continue using
the algorithm to move towards a better (i.e. larger) lower bound, even when
non-planar points where encountered. In fact, for six of the problems where
non-planar graphs arose, optimality was eventually reached.

In looking at the results in columns 4 and 5 of Table 2, it is worth noting
that for every problem, more combs were found by DP-CUTFINDER than
non-combs. On average, of the total number of violated D P-constraints
found, 21.9 % were non-combs. Also note that of the tight D P-constraints,
an average of 20.8 % were non-combs. Thus non-comb D P-constraints were
definitely required and active for our final solutions.

In addition to those just described, we carried out another test, test
T2. For this test we ran CONCORDE without DP-CUTFINDER to ob-
tain the CONC2 lower bound (as previously described) and the assoicated
final z-vector, then we ran DP-CUTFINDER just once on this final x-vector
(if it was not already optimal). After that, we used CONCORDE once to
reoptimize over the LP consisting of just the DP-constraints found by DP-
CUTFINDER and the SEP constraints. The goal of this test was to see what
kind of improvement the DP-constraints generated by our program might
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have on the lower bound CONC2 obtained by CONCORDE, and to see how
often DP-CUTFINDER could ”cut-off” the final z-vector found for CONC2.
Note that CONCORDE was not able to find any violated constraints for this
x-vector using its default separation routines, which in particular included
its separation heuristics for comb constraints.

The results are shown in Table 3. Column 2 lists the optimal tour value,
column 3 lists the lower bound CONC2 value and column 4 lists the new lower
bound obtained using the new DP-constraints found by DP-CUTFINDER
(note that "OTL” denotes that the optimal tour value was reached). Column
5 lists the number of violated DP-constraints that were found in one iteration
of DP-CUTFINDER and column 6 lists the number of these which were tight.
For columns 5 and 6 the numbers are once again partitioned into the number
of comb and non-comb DP-constraints.

As can be seen from the table, DP-CUTFINDER was able to ”cut-oft”
and thus increase the lower bound for 22 if the 26 problems tested, although
the average increase in the ratio R was only 3.5 %. There were four excep-
tions for which the lower bound did not increase. For tsp225 and 280, DP-
CUTFINDER found no violated constraints. For pcb442 and rat783, adding
the violated D P-constraints found by DP-CUTFINDER had no effect on the
lower bound.

Another interesting observation from Table 3 deals specifically with the
problems kroD100, kroB200 and pr439. For all three of these points there
was an increase in the lower bound, yet none of the violated D P-constraints
we found for these problems were tight for the final solution. At first this
seemed quite puzzling, so we checked our D P-constraints by hand, and ver-
ified that they were indeed violated by the xz-vector from CONC2, and were
not tight for the final a-vector which gave the increased lower bound. We
suspect that these anomolies were caused by the necessary preprocessing of
LPs by CONCORDE, as we know that CONCORDE sometimes ignores some
of the cuts in a cut file (when solving the LP) if they do not appear to be
useful on a sparser version of the graph.

We did three more tests, T3, T4 and T5, this time only for the prob-
lem [in318. Tests T3 and T4 were slight variations of our original test
process, test T1. In test T3, only violated comb constraints found by D P-
CUTFINDER were added to the constraints file. The motivation behind this
test was to determine if restricting the kinds of D P-constraints being added
to be only comb constraints would help us in maintaining planarity of our
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Table 3: Improving on CONC?2

Problem Tour | CONC2 | After # DP | # Tight
Name | Value | Value DP-CUT | (C/NonC)| DP
(C/NonC

lroD100| 21294 | 21289.333 | 21290.800 | (2/0) 0/)
kroE100 | 22068 | 22029.250 | 22038.909 | (9/0) 6/°)
pri2d | 59030 | 59014.571 | 59025.639 | (12/0) 11/
pri36 | 96772 | 96514.667 | 96603.600 | (10/0) (10/)
ch150 | 6528 | 6525.125 | OTL (9/9) 2/0)
KkroA150] 26524 | 26515.417 | 26517.667 | (13/2) (12/2)
kroB150] 26130 | 26114.500 | OTL (19/13) (19/13)
pri52 | 73682 | 73349.500 | 73362.300 | (4/0) 2/
rat105 | 2323 | 2318.660 | 2319.454 | (3/0) 2/
d198 | 15780 | 15741.167 | 15756.250 | (15/2) (12/0)
kroB200| 29437 | 20425.000 | 29431.708 | (2/0) 0/)
t5p225 | 3916 | 3014.880 | /) /)
gil262 | 2378 | 2376.857 | 2377.000 | (4/0) (4/0)
a280 | 2579 | 2578.000 | — =) =)
pr200 | 43191 | 48186.500 | 48188.000 | (1/0) 1)
lin318 | 42029 | 42003.310 | 42021.300 | (18/40) (17/19)
rd400 | 15281 | 15253.500 | 15255.067 | (7/0) 1/
pr439 107217| 107040.503 | 107055.051 | (5/2) (0/0)
pchad2 | 50778 | 50750.333 | 50750.333 | (4/0) 4/
4493 | 35002 | 34979.272 | 34985525 | (50/42) | (15/3)
w574 | 36905 | 36894.587 | 36897.629 | (30/9) (12/1)
rators | 6773 | 6766.310 | 6767.671 | (28/5) (4/1)
d657 | 48012 | 48872.117 | 48877.603 | (30/56) | (3/0)
wi2d4 | 41010 | 41871.685 | 41873.843 | (15/1) 2/0)
rat783 | 8806 | 8304.932 | 8304.932 | (3/0) 1)
w1060 | 224004| 223914.463 | 223921.907 | (24/7) (15/2)
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support graphs. For this particular example we found that this was not the
case.

In test T4, only the most violated inequalities were added to the con-
straints file at each iteration, just as Letchford had originally set out in [16].
The purpose of this test was to see if our use of all the violations found per
iteration of DP-CUTFINDER, as opposed to only the one violated by the
most, was worthwhile. For this particular problem, it seems that adding all
the violations did greatly decrease the number of iterations of CONCORDE
required; when adding only the maximally violated inequalities, 26 iterations
of CONCORDE were required as opposed to the 8 iterations required in our
test T1.

In test T5, we did a test similar to test T2, but the code ensuring that
the final solution satisfied all the subtour constraints was removed. It had
been suggested to us by the makers of CONCORDE that CONCORDE'’s
results were often better if the condition that the subtour constraints had to
be satisfied was relaxed. For [in318, this was indeed true; test T5 yielded
a lower bound of 42,014.429, while our original test T2 resulted in a lower
bound of 42,003.310. So a slightly higher lower bound was achieved.

3.3 Summary of Test Results

We feel that our results demonstrate the practical usefulness of the D P-
constraints and the enhanced Letchford separation algorithm for solving
STSPs within a branch and cut framework. In test T1, using only DP-
constraints and DP-CUTFINDER performed very well in terms of solution
quality when compared to the solutions produced by a state-of-the-art tool
such as CONCORDE. Moreover, non-comb D P-constraints were definitely
required and active for our final solutions. Also, in test T2, we were able
to cut off the final solutions obtained by CONCORDE (without branching)
for all but 2 of the 46 problems tested, and both violated comb and non-
comb constraints were found. Thus, in particular, the enhanced Letchford
algorithm was able to find violated comb constraints missed by the heuristic
comb separation algorithms used by CONCORDE.

We also feel that the test results demonstrated the usefulness of the en-
hancements we made to the Letchford algorithm. In particular, for just under
half of the 46 problems tested, non-planar support graphs were encountered,
often very early in the cutting-plane process. In these cases we were able
to use our shrinking algorithm to continue moving towards a better lower
bound. Thus being able to shrink and use the algorithm for non-planar sup-
port graphs was a very useful and important enhancement for the Letchford
algorithm.
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4 Domino-combs which have exactly one non-
regular domino

Recall from Section 3.1.2 that when all the dominoes in a domino-comb are
regular, we have a comb, and the corresponding D P-constraint is known
to be facet-inducing. In this section we consider all domino-combs which
have exactly one non-regular domino, and characterize those which are facet-
inducing.

We begin this section by describing a certain subclass of the domino-
combs which have exactly one non-regular domino.

Definition A twisted comb is a domino-comb with p — 1 (p > 3) regular
dominoes Dy, ..., D,_; and one non-regular domino, D,, which contains at
least two regular dominoes in each of its three compartments A,, B, and
C,. The corresponding D P-constraint is called a twisted comb constraint. If
the regular dominoes in a twisted comb are all 2-matching dominoes (that is,
|A;| = |B;| =1for1 <i<p-—1), then it is called a 2-matching twisted comb,
and the corresponding constraint is a 2-matching twisted comb constraint.

Three simple examples of 2-matching twisted combs are illustrated in
Figure 4. Note that the 2-matching twisted comb shown in (c¢) can be ob-
tained from the one shown in (b) by switching compartments in domino D,,
as discussed in Theorem 3.3.

c, A, B, Cc, A, B, A, B, C,
\
(a) .

Figure 4: 2-matching twisted combs

The twisted comb constraints were first introduced in [2] where they were
shown to be facet-inducing for STSP(n). The main result of this section will
be to characterize the facet-inducing domino-comb constraints which have
exactly one non-regular domino by showing that any D P-constraint which
has exactly one non-regular domino is facet-inducing if and only if it is either
a twisted comb constraint or else equivalent to a comb inequality.

In the proofs that follow we will need to illustrate many tight tours in
K,. A tour is the 0-1 incidence vector 2* € R¥ of a Hamilton cycle in K.
A tour z* is called tight, or a-tight for an inequality ax > a (or axr < «)
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if ax* = «a. The following proposition will make it easier to recognize tight
tours for the twisted comb inequalities.

Proposition 4.1 Let 2* be a tour in K, let {F;D,,...,D,} be a domino-
comb in K,, and let S represent the set of all node subsets A;, B; and D; for

t=1,2...,p. Then a tour x* is tight for the DP-constraint corresponding
to {F;Dy,...,D,} if and only if * satisfies one of the following:

(1) x*(6(S)) = 2 for each subset S € S, and x* =1 for exactly one edge in
F, or
(2) x* uses no edges in F (i.e. ¥ =0 for alle € F), and 2*(6(S)) = 2 for
all S € S except one set S" for which x*(6(S")) =4
Proof Consider the D P-constraint in form (7). It can be rewritten as
P P

P(6(A)) + 5 S w(6(B)) + 5 3 (8(D) + x(F) > 3p+ 1.

=1 =1 =1

DO | =

Since any tour z* satisfies 2*(6(.S)) > 2 for any node subset S and z* > 0
for all e € E, the result follows. O

5 Distinctness of the Twisted Comb Constraints

In this section, we will show that the family of twisted comb constraints
is distinct from other well-known families of facet-inducing inequalities for
STSP(n). We note that Caprara, Fischetti and Letchford [4] have already
verified this for the single twisted comb constraint corresponding to the
twisted comb shown in Figure 4(a).

Much of our argument is based on a result of Naddef and Rinaldi from
1992 [19]. First we require two definitions from that paper.

Definition [19] An inequality constraint ¢’x > ( is in tight triangular form
(or TT-form) if and only if

(1) the coefficients ¢, satisfy the triangle inequality, i.e., cup < Cyw + Cow
for any set of three distinct nodes w, v and w;

(2) for every node w, there exist w,v € V\{w} for which the triangle
inequality is tight, i.e., cuy = Cuw + Cow-
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Notice that tight triangularity depends only on the edge coefficients c,,
and not on the right hand side ( of the constraint. As an example, it is not
difficult to show that the subtour elimination constraint x(6(S)) > 2 satisfies
the triangle inequality and is in tight triangular form for any node subset S
satisfying 2 < |S| < |V — 2.

Definition [19] A tight triangular inequality 'z > ( is simple if ¢, > 0
for all e € E. If ¢'o > ( is not simple, then we can partition the node set
V=ViU---UV, so that

(1) ce =0foralle e y(V;), 1 <i<k;
(2) ce=cypforalle fe E(V;:V;),1<i<j<k.

The simple inequality associated with ¢’ x > ( is obtained by collapsing each
partite V; into a single node 7. More precisely, it is the inequality ()77 > ¢
on STSP(k) defined by &, = c.,where e € E(V,V}).

Note that (¢)"Z > ( is tight triangular if and only if ¢"2 > ( is tight
triangular.

Lemma 5.1 The TT-form of the twisted comb constraint is form (9), i.e.

i=1 i=1 i=1

Proof We begin by finding the simple inequality associated with the twisted
comb constraint, which is an underlying 2-matching twisted comb constraint.

Let S be a node subset that is entirely contained within one compartment
of every domino, and on one shore of the handle; then any edge e € ~(95)
is not in E(A; : B;), E(A; : C;) nor E(B; : C;) for any 1 < i < p, nor in
F. Thus, ¢, = 0 for all e € 4(S). In particular, this applies to S = A;
or B;, 1 < i < p—1 (of course, it applies trivially if any of these sets is
a singleton). It also applies to any set of nodes that is entirely contained
within one of the six locations indicated with open circles in Figure 5. We
denote these sets by Vi, ..., V;; note that one or more of these may be empty.
Moreover, ¢, = ¢; for all e, f € E(Sy : S3), where Sy, Sy are non-empty sets
in {Ay,...,Ap_1,B1,...,By_1,V1,...,Vs}. Partition the node set as

V=(AUB)U - U(Ap-1UB,_1)UVTU--- UV,
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Figure 5: Locations for node sets Vi,..., Vg

Figure 6: Edge coefficients for a 2-matching twisted comb constraint

then collapse each A; and B;, 1 <14 < p — 1, and each non-empty V;. Note
that this simple inequality associated with the twisted comb constraint is a
2-matching twisted comb constraint.

We next demonstrate that the 2-matching twisted comb constraints in
form (9) are tight-triangular. Figure 6 shows a simple 2-matching twisted
comb and the corresponding edge coefficients of this form of the constraint.
The unusual configuration of the handle gives an edge coefficient diagram
that better displays the symmetry with respect to the compartments of the
irregular domino.

It is straighforward to verify from this diagram that the edge coefficients
are all positive and satisfy the triangle inequality, and that moreover each
node is part of a tight triangle. This example can clearly be generalized to
all 2-matching twisted combs.

Since the simple inequality associated with the twisted comb constraints
is tight triangular, it follows that the general twisted comb constraints are
tight triangular also. O

Next we require an additional fact from [19] about the tight triangular
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form of inequalities on STSP(n).

Proposition 5.2 (Naddef and Rinaldi, 1992) Let cT’x > ( be a facet-
inducing constraint on STSP(n). An inequality d*x > 6 equivalent to cTx >
C is tight triangular if and only if T = yc + A\TA and § = v6 + AT 2 where
v >0 and A € R™ satisfy, for each v € V(K,),

1
Au = 57 IIlaX{va - cuv - Cuw | U,UJ G V(Krn)\{u}7 v ?é w}

A consequence of this proposition is that any facet-inducing inequality
on STSP(n) can be put into TT-form, and moreover, this form is unique up
to multiplication by a positive scalar. This can be used to determine when
two facet-inducing constraints are distinct.

Proposition 5.3 The twisted comb constraints are distinct from all of the
SEP inequalities (3),(4) and (5) i.e. the subtour elimination constraints,
the non-negativity constraints and the upper bound constraints .

Proof The usual form of the upper bound constraint z,, < 1 where uv €
E(K,) is not tight triangular. This inequality can, in fact, can equivalently be
written as the subtour elimination constraint x(6(S)) > 2 for S = {u,v}. As
noted earlier in this section, the subtour elimination constraints x(6(5)) > 2
are in TT-form for any node subset S satisfying 2 < |S| < [V| — 2. Note
that the coefficient of each edge in this constraint is either 0 or 1. From
Figure 6 we can see that the positive edge coefficients in the T7T-form of
a twisted comb constraint take on four different values (namely, 1 through
4). Therefore, the twisted comb constraints are distinct from the subtour
elimination constraints and upper bound constraints.

The usual form of the non-negativity constraint, x,, > 0, where uv €
E(K,) is not tight triangular. It can be put into TT-form by adding one
copy of the degree equation (2) for each w € V(K,)\{u, v}; this yields ¢'z >
2(n — 2), where ¢, = 1if e € 6({u,v}), and ¢, = 0 otherwise. Since the
edge coefficients take on only two different values, we may conclude that the
twisted comb constraints are distinct from the non-negativity constraints. O

The nontriviality of the twisted comb constraints is not surprising. Given
the derivation of the general D P-constraints given by Letchford in [16], it
seems more probable that they belong to the large family of constraints
whose definition involves node subsets that can be separated into handles
and teeth. The comb constraints are the prototypes of this family; general-
izations include the clique tree constraints, the path, wheelbarrow and bicycle
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|

binested constraints
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Figure 7: Inclusion diagram for STSP(n) facet-inducing constraints

constraints, the star and hyperstar constraints, the bipartition constraints,
and the binested constraints. For a survey of these constraints, see [17].
In Figure 7 we reproduce a diagram from that paper indicating inclusions
among these sets of constraints.

We will show next that the twisted comb constraints are not in the family
of binested constraints. The complete definition of this family is complicated
and can be found in [17]; we include here only what is needed for our proof.

Definition A set of subsets {Si,...,Ss} is nested if for any pair of sets
S; # Sj, either S; C Sj or Sj C S;or S, N Sj = 0.

A binested inequality is defined on two nested sets of node sets, handles
H ={H,,...,H,} and teeth T = {T},...,T;}, together with corresponding
positive integers {ay, ..., an} and {f, ..., B} (called the multiplicities of the
handles and teeth respectively), which must satisfy a number of conditions.
The TT-form of the binested constraint is

h t
> as(8(H:) + 3. B (6(13) > 2D(H.T),

=1 7=1

where I'(H, 7) is a positive integer which is a function of the handles, the
teeth, and their multiplicities. Notice that the edge coefficients are deter-
mined solely by the cuts associated to the binested handles and teeth (to-
gether with their multiplicities).
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(a) (b)

Figure 8: Coefficients for the 12-node twisted comb constraint

At first glance, the twisted comb constraints do not appear to fit the
pattern of the binested inequalities. To prove this, we consider the 12-node
twisted comb in Figure 8(a), which is contained as a subset of any twisted
comb. The edge coefficients in the associated constraint are shown in Figure
8(h); this pattern must appear in any constraint associated with any twisted
comb.

First we require a couple of technical lemmas regarding tight triangles.

Lemma 5.4 Let c"x > ¢ be the TT-form of a binested inequality on ST SP(n),
and let S C V(K,,) be a handle or a tooth. If x,y and z are distinct nodes in
V(K,) satisfying cuy + ¢y. = ¢4z, then y must be on the same shore of 6(S)
as x or z (or both).

Proof For any handle or tooth S, the cut 6(S) either has all three nodes on
the same shore, or has two nodes on one shore and the remaining node on the
opposite shore. Note that in the first case, the cut contributes nothing to the
edge coefficients ¢y, ¢,. and ¢,.. Let 1) denote the sum of the multiplicities
of all handles and/or teeth whose cuts have = on one shore and y, z two on
the opposite shore; similarly, let p represent the sum of the multiplicities
of all node sets whose cuts isolate y from the other two, and o, the sum
of all multiplicities of node sets whose cuts isolate z. Then 1, p and o are
non-negative integers that satisfy

Coy =V +p; Cpo=p+0; Cpo=0+1.

Since ¢y + ¢y = ¢4, we must conclude that p = 0; in other words, there
is no handle or tooth whose cut separates y from {z, z}.0

If cpy + cyz = Cu2, we will call zz the hypotenuse of the tight triangle.
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Figure 9: A tight square with a =0+ ¢

Corollary 5.5 Let ¢’z > ( be the TT-form of a binested inequality on
STSP(n), and let S C V(K,) be a handle or a tooth of this inequality. If
w,x,y and z are distinct nodes in V(I,,) satisfying Cuy~+Cy. = Copw+Cpz = Caz
and Cyy + Cpy = Cys + Cy. = Cyy, then either

(1) all four nodes are on the same shore of 6(S), or
(2) {z,w} and {y, z} are on opposite shores, or

(3) {z,y} and {w,z} are on opposite shores.

Proof In Figure 9, we give an example of four nodes satisfying the conditions
of the corollary, under the assumption that a = b+ c.
By Lemma 5.4,

(a) w must be on the same shore of §(5) as « or z,
(b) y must be on the same shore as x or z,
(¢) = must be on the same shore as w or y, and

(d) z must be on the same shore as w or y.

Suppose that it is not the case that all four nodes are on the same shore.
Conditions (a) through (d) imply that 6(S) cannot separate one of these
nodes from the other three; they also imply that we cannot have {x,z} on
one shore and {w,y} on the other. O

We will call a set of four nodes whose edge coefficients satisfy the con-
ditions of Corollary 5.5 a tight square; the hypotenuses of the tight square
are the two hypotenuses of the four tight triangles within it. In Figure 9, for
example, {z, z} and {w, y} are the hypotenuses. Corollary 5.5 says that the
endnodes of one hypotenuse of a tight square cannot appear in the opposite
shore from the endnodes of the other hypotenuse.
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Theorem 5.6 The twisted comb constraints are distinct from the binested
inequalities.

Proof Assume that there exists a twisted comb constraint, ¢’z > ¢, which
is equivalent to a binested constraint, ¢z > f . As noted earlier, any twisted
comb contains a subset of twelve nodes Vo = {p,q,r,s,t,u,p', ¢, 7', s t' u'}
whose edge coefficients in the T'T-form of the corresponding constraint are as
shown in Figure 10. For clarity, we have omitted edges that are hypotenuses
of tight triangles.

Figure 10: Diagram for Vj

In order for this figure to represent the edge coefficients of (some positive
multiple of) the TT-form of a binested inequality, every pair of nodes in V;
must be separated by the cut of at least one tooth or handle. In particular,
there must be at least one node set H whose cut separates p and p'; without
loss of generality, we can assume H is a handle. Since the nodes {p, ¢, 7, ¢}
form a tight square with hypotenuses pq¢’ and p'q, by Corollary 5.5 {p, ¢}
and {p', ¢'} must be on opposite shores of 6(H); without loss of generality,
we assume {p,q} C H. Now, {q,r,¢,r'} is also a tight square, with hy-
potenuses ¢r and ¢'r’; since it cannot be the case that ¢ is the only node of
this square appearing in H, and we already know that ¢’ € H, Corollary 5.5
implies that 7' € H and r € H. Repeating this argument progressively with
the tight squares {r,s,7’,s'}, {s,t,s',t'} and {¢,u,t',u'}, we conclude that
{p,q,r', 8", t,u} = HNVy and {p/,¢',r, s, t',u'} = HNVy (see Figure 11).

Notice that 6(H) separates x from 2/, for all x € Wy = {p,q,r, s,t,u}.
Moreover, if we had begun by looking for a node set whose cut separates any
x from 2', the tight squares (considered in an appropriate sequence) would
force the intersection of this set (or its complement) with V4 to be precisely
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Figure 12: Edges which get a contribution of «

H N Vy. Hence, for each x € Wy, H NV} is the unique subset of V4 (up to
complements) whose cut separates = from 2’. In particular, since the handles
in a binested constraint are nested, this implies that any handle H' satisfies
H' NV e {0,HnNVy, HNVy, Vo}. Let a denote the sum of the multiplicites
of all handles in V(K,) whose whose cut contributes to the coefficients of
edges in (V}); this accounts for a contribution of « to the coefficients ¢ of
the edges shown in Figure 12.

To account for the positive edge coefficients on the edges of v(V5) not
appearing in Figure 12, we must have other node sets, which, since they
cannot be handles, must be teeth. If 7" is such a tooth, 6(7") cannot separate
x from a2/, for any x € Wy; if it did, then by the argument in the previous
paragraph, TNV, = HNVy (or TNVy = HN V), and thus 6(T) would
not contribute to the edges with zero coefficient in Figure 12. Hence, T'NVj
must consist of one or more of the pairs {p,p'}, {q,¢'}, {r,r'}, {s,s'}, {t,t'}
and {u,u'}. Let § > 0 denote the sum of the multiplicities of all teeth in
V(K,) whose cuts separate {p,p'} and {u,u'}. Then
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5pu:ﬁ<a+6:5pru.

From Figure 10, however, we see that in the twisted comb constraint,

Cou =4 >3 = Cpry-

Since this disparity cannot be resolved with a positive scalar multiple, this
contradicts our assumption that the twisted comb constraint is equivalent to
a binested constraint. O

Note that it follows from Theorem 5.6 that the twisted comb constraints
are not equivalent to any of the families of facet-inducing constraints for
STSP(n) which are shown in Figure 7, since they are contained in the
binested constraints (the only exception are the non-integral bipartition in-
equalites, which are not known to be facet-inducing for STSP(n) in general).
Other families of nontrivial, facet-inducing constraints for STSP(n) which
do not belong to the set of binested inequalities are the chain constraints, the
crown constraints and the ladder constraints. Showing that the twisted comb
constraints do not belong to these families is comparatively straightforward.

It is shown in [6] that the TT-form of the associated simple inequality
for the chain constraint has 1, 2 and 3 as the only possible edge coefficients,
whereas a simple twisted comb constraint in 7'7-form has four different pos-
itive edge coefficients.

The simple crown constraints are defined on STSP(4k), for k > 1. For
any labelling of the nodes as 1,2,...,4k, the associated simple crown in-
equality is ¢’z > 12k(k — 1) — 2, where for any v € V(Ky,),

[ Ak—64j], 1<[jl<2k -1,
CU,U+] - Q(k — 1), ] = Qk

This constraint is shown to be valid and facet-inducing for ST'SP(4k), and
in TT-form, by Naddef and Rinaldi in [20]. Even for & = 1, there are five
different positive edge coefficients.

The ladder inequalities, introduced by Boyd, Cunningham, Queyranne
and Wang in 1995 [3], are defined on two handles and a positive even num-
ber of teeth, which satisfy different conditions than the binested inequali-
ties. Also, unlike the binested constraints but like the twisted comb con-
straints, the left hand side of the T"I-form of the ladder constraints includes
> ax(6(H;)) + X Bx(6(T;)) plus some additional terms. In [3], it is shown
that these constraints have Chvétal rank 2, and so they cannot be equivalent
to the twisted comb constraints which, as shown in [6], have Chvatal rank
exactly 1.
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