# Preimages of Small Geometric Cycles 

Sally Cockburn<br>Department of Mathematics<br>Hamilton College, Clinton, NY 13323<br>scockbur@hamilton.edu


#### Abstract

A graph $G$ is a homomorphic preimage of another graph $H$, or equivalently $G$ is $H$-colorable, if there exists a graph homomorphism $f: G \rightarrow H$. A classic problem is to characterize the family of homomorphic preimages of a given graph $H$. A geometric graph $\bar{G}$ is a simple graph $G$ together with a straight line drawing of $G$ in the plane with the vertices in general position A geometric homomorphism (resp. isomorphism) $\bar{G} \rightarrow \bar{H}$ is a graph homomorphism (resp. isomorphism) that preserves edge crossings (resp. and noncrossings). The homomorphism poset $\mathcal{G}$ of a graph $G$ is the set of isomorphism classes of geometric realizations of $G$ partially ordered by the existence of injective geometric homomorphisms. A geometric graph $\bar{G}$ is $\mathcal{H}$-colorable if $\bar{G} \rightarrow \bar{H}$ for some $\bar{H} \in \mathcal{H}$. In this paper, we provide necessary and sufficient conditions for $\bar{G}$ to be $\mathcal{C}_{n}$-colorable for $3 \leq n \leq 5$.


## 1 Basic Definitions

A graph homomorphism $f: G \rightarrow H$ is a vertex function such that for all $u, v \in V(G), u v \in E(G)$ implies $f(u) f(v) \in E(H)$. If such a function exists, we write $G \rightarrow H$ and say that $G$ is homomorphic to $H$, or equivalently, that $G$ is a homomorphic preimage of $H$. A proper $n$-coloring of a graph $G$ is a homomorphism $G \rightarrow K_{n}$; thus, $G$ is $n$-colorable if and only if $G$ is a homomorphic preimage of $K_{n}$. (For an excellent overview of the theory of graph homomorphisms, see [4].)

In 1981, Maurer, Salomaa and Wood [9] generalized this notion by defining $G$ to be $H$-colorable if and only if $G \rightarrow H$. They used the notation $\mathcal{L}(H)$ to denote the family of $H$-colorable graphs. For example, $G$ is $C_{5}{ }^{-}$ colorable if and only if $G \rightarrow C_{5}$; this means there exists a proper 5 -coloring of $G$ such a vertex of color 1 can only be adjacent to vertices of color 2 or 5 , but not to vertices of color 3 or 4 , etc. Maurer et al. noted that for odd $m$ and $n, C_{m}$ is $C_{n}$-colorable (i.e. $C_{m} \rightarrow C_{n}$ ) if and only if $m \geq n$. Since any composition of graph homomorphisms is also a graph homomorphism, this generates the following hierarchy among color families of cliques and odd cycles.

$$
\begin{aligned}
& \ldots \mathcal{L}\left(C_{2 n+1}\right) \subsetneq \mathcal{L}\left(C_{2 n-1}\right) \subsetneq \cdots \subsetneq \mathcal{L}\left(C_{5}\right) \subsetneq \mathcal{L}\left(C_{3}\right)= \\
& \quad=\mathcal{L}\left(K_{3}\right) \subsetneq \mathcal{L}\left(K_{4}\right) \subsetneq \cdots \subsetneq \mathcal{L}\left(K_{n}\right) \subsetneq \mathcal{L}\left(K_{n+1}\right) \ldots
\end{aligned}
$$

For a given graph $H$, the $H$-coloring problem is the decision problem, "Is a given graph $H$-colorable?" In 1990, Hell and Nes̆etřil showed that if $\chi(H) \leq 2$, then this problem is polynomial and if $\chi(H) \geq 3$, then it is NP-complete [3].

The concept of $H$-colorability can been extended to directed graphs. Work has been done by Hell, Zhu and Zhou in characterizing homomorphic preimages of certain families of directed graphs, including oriented cycles [12], [8], [5], oriented paths [7] and local acyclic tournaments [6].

In [1], Boutin and Cockburn generalized the notion of graph homomorphisms to geometric graphs. A geometric graph $\bar{G}$ is a simple graph $G$ together with a straight-line drawing of $G$ in the plane with vertices in general position (no three vertices are collinear and no three edges cross at a single point). A geometric graph $\bar{G}$ with underlying abstract graph $G$ is called a geometric realization of $G$. The definition below formalizes what it means for two geometric realizations of $G$ to be considered the same.

Definition 1.1. A geometric isomorphism, denoted $f: \bar{G} \rightarrow \bar{H}$, is a function $f: V(\bar{G}) \rightarrow V(\bar{H})$ such that for all $u, v, x, y \in V(\bar{G})$,

1. $u v \in E(\bar{G})$ if and only if $f(u) f(v) \in E(\bar{H})$, and
2. $x y$ crosses $u v$ in $\bar{G}$ if and only if $f(x) f(y)$ crosses $f(u) f(v)$ in $\bar{H}$.

Relaxing the biconditionals to implications yields the following.
Definition 1.2. A geometric homomorphism, denoted $f: \bar{G} \rightarrow \bar{H}$, is a function $f: V(\bar{G}) \rightarrow V(\bar{H})$ such that for all $u, v, x, y \in V(\bar{G})$,

1. if $u v \in E(\bar{G})$, then $f(u) f(v) \in E(\bar{H})$, and
2. if $x y$ crosses $u v$ in $\bar{G}$, then $f(x) f(y)$ crosses $f(u) f(v)$ in $\bar{H}$.

If such a function exists, we write $\bar{G} \rightarrow \bar{H}$ and say that $\bar{G}$ is homomorphic to $\bar{H}$, or equivalently that $\bar{G}$ is a homomorphic preimage of $\bar{H}$.

An easy consequence of this definition is that no two vertices that are adjacent or co-crossing (i.e. incident to distinct edges that cross each other) can have the same image (equivalently, can be identified) under a geometric homomorphism.

Boutin and Cockburn define $\bar{G}$ to be $n$-geocolorable if $\bar{G} \rightarrow \bar{K}_{n}$, where $\bar{K}_{n}$ is some geometric realization of the $n$-clique. The geochromatic number of $\bar{G}$, denoted $X(\bar{G})$, is the smallest $n$ such that $\bar{G}$ is $n$-geocolorable.

Observe that if a geometric graph of order $n$ has the property that no two of its vertices can be identified under any geometric homomorphism, then $X(\bar{G})=n$. The existence of multiple geometric realizations of the $n$-clique for $n>3$ necessarily complicates the definition of geocolorability, but there is additional structure we can take advantage of.

Definition 1.3. Let $\bar{G}$ and $\widehat{G}$ be geometric realizations of $G$. Then set $\bar{G} \preceq$ $\widehat{G}$ if there exists a (vertex) injective geometric homomorphism $f: \bar{G} \rightarrow \widehat{G}$. The set of isomorphism classes of geometric realizations of $G$ under this partial order, denoted $\mathcal{G}$, is called the homomorphism poset of $G$.

Hence, $\bar{G}$ is $n$-geocolorable if $\bar{G}$ is homomorphic to some element of the homomorphism poset $\mathcal{K}_{n}$. In [2], it is shown that $\mathcal{K}_{3}, \mathcal{K}_{4}$ and $\mathcal{K}_{5}$ are all chains. Hence, for $3 \leq n \leq 5, \bar{G}$ is $n$-geocolorable if and only if $\bar{G} \rightarrow \bar{K}_{n}$, where $\bar{K}_{n}$ is the last element of the chain. By contrast, $\mathcal{K}_{6}$ has three maximal elements, so $\bar{G}$ is 6 -geocolorable if and only if it is homomorphic to one of these three realizations.

Definition 1.4. Let $\mathcal{H}$ denote the homomorphism poset of geometric realizations of a simple graph $H$. Then $\bar{G}$ is $\mathcal{H}$-geocolorable if and only if $\bar{G} \rightarrow \bar{H}$ for some maximal $\bar{H} \in \mathcal{H}$.

In this paper, we provide necessary and sufficient conditions for $\bar{G}$ to be $\mathcal{C}_{n}$-geocolorable, where $3 \leq n \leq 5$. The structure of the homomorphism posets $\mathcal{C}_{n}$ for $3 \leq n \leq 5$ is given in [2]. It is worth noting that the geometric cycles are richer than than abstract cycles. All even cycles are homomorphically equivalent to $K_{2}$, and as noted earlier, $C_{2 k+1} \rightarrow C_{2 \ell+1}$ if and only if $k \geq \ell$. However, since geometric homomorphisms preserve edge crossings, and both $K_{2}$ and $C_{3}$ have only plane realizations, this is not true even for small non-plane geometric cycles, as shown in Figure 1.


Figure 1: $\widehat{C}_{4} \nrightarrow \overline{K_{2}}$ and $\widehat{C}_{5} \nrightarrow \overline{C_{3}}$

## 2 Edge-Crossing Graph and Thickness Edge Colorings

Definition 2.1. [2] The edge-crossing graph of a geometric graph $\bar{G}$, denoted by $E X(\bar{G})$, is the abstract graph whose vertices correspond to the edges of $\bar{G}$, with adjacency when the corresponding edges of $\bar{G}$ cross.

Clearly, non-crossing edges of $\bar{G}$ correspond to isolated vertices of $E X(\bar{G})$. In particular, $\bar{G}$ is plane if and only if $E X(\bar{G}) \rightarrow K_{1}$. To focus on the crossing structure of $\bar{G}$, we let $\bar{G}_{\times}$denote the geometric subgraph of $\bar{G}$ induced by its crossing edges. Note that $E X\left(\bar{G}_{\times}\right)$is simply $E X(\bar{G})$ with any isolated vertices removed. From [2], a geometric homomorphism $\bar{G} \rightarrow \bar{H}$ induces a geometric homomorphism $\bar{G}_{\times} \rightarrow \bar{H}_{\times}$as well as graph homomorphisms $G \rightarrow H$ and $E X(\bar{G}) \rightarrow E X(\bar{H})$.

Definition 2.2. [1] A thickness edge m-coloring $\epsilon$ of a geometric graph $\bar{G}$ is a coloring of the edges of $\bar{G}$ with $m$ colors such that no two edges of the same color cross. The thickness of $\bar{G}$ is the minimum number of colors required for a thickness edge coloring of $\bar{G}$.

From these two definitions, a thickness edge $m$-coloring $\epsilon$ of $\bar{G}$ is a graph homomorphism $\epsilon: E X(\bar{G}) \rightarrow K_{m}$. This can be generalized as follows.
Definition 2.3. A thickness edge $C_{m}$-coloring $\epsilon$ on $\bar{G}$ is a graph homomorphism $\epsilon: E X(\bar{G}) \rightarrow C_{m}$.

Observe that under a thickness edge $C_{m}$-coloring, edges are colored with colors numbered $1,2, \ldots, m$ such that colors assigned to edges that cross each other must be consecutive $\bmod m$. Equivalently, edges of color $i$ may only be crossed by edges of colors $i-1$ and $i+1 \bmod m$. Note also that if $\bar{G}$ has a thickness edge $C_{m}$-coloring for $m>3$, then $\bar{G}$ cannot have three mutually crossing edges.

Definition 2.4. Let $\epsilon$ be a thickness edge coloring $\bar{G}$. The plane subgraph of $\bar{G}$ induced by all edges of a given color is called a monochromatic subgraph of $\bar{G}$ under $\epsilon$. The monochromatic subgraph corresponding to edge color $i$ is called the $i$-subgraph of $\bar{G}$ under $\epsilon$.

We assume from now on that $\bar{G}$ has no isolated vertices, which implies that every vertex belongs to at least one monochromatic subgraph of $\bar{G}$ under any thickness edge coloring.

## 3 Easy Cases: $n=3$ and $n=4$

The smallest (simple) cycle is $C_{3}=K_{3}$. As noted in [1], $\bar{G} \rightarrow \bar{K}_{3}$ if and only if $\bar{G}$ is a 3 -colorable plane geometric graph. Thus $\bar{G}$ is $\mathcal{C}_{3}$-geocolorable
if and only if $G$ is 3 -colorable and $E X(\bar{G})$ is 1-colorable, or more concisely,

$$
\bar{G} \rightarrow \bar{C}_{3} \Longleftrightarrow G \rightarrow K_{3} \text { and } E X(\bar{G}) \rightarrow K_{1}
$$

Next, $C_{4}$ has two geometric realizations, one plane and the other with a single crossing, which we denote $\bar{C}_{4}$ and $\widehat{C}_{4}$ respectively. Since $\bar{C}_{4} \rightarrow \widehat{C}_{4}$, the homomorphism poset $\mathcal{C}_{4}$ consists of a two element chain, as shown in Figure 2. Hence $\bar{G}$ is $\mathcal{C}_{4}$-geocolorable if and only if $\bar{G} \rightarrow \widehat{C}_{4}$.


Figure 2: $\bar{C}_{4} \rightarrow \widehat{C}_{4}$
If $\bar{G} \rightarrow \widehat{C}_{4}$, then $G \rightarrow C_{4}$ and $E X(\bar{G}) \rightarrow E X\left(\widehat{C}_{4}\right)=K_{2} \cup 2 K_{1}$. Since any bipartite graph is a preimage of $K_{2}$,

$$
\bar{G} \rightarrow \widehat{C}_{4} \Longrightarrow G \rightarrow K_{2} \text { and } E X(\bar{G}) \rightarrow K_{2}
$$

which merely says that any $\mathcal{C}_{4}$-geocolorable geometric graph is bipartite and thickness-2. In [1], Boutin and Cockburn show that the converse is false, by describing a family of bipartite, thickness-2 geometric graphs of arbitrarily large order with the property that no two vertices can be identified under any geometric homomorphism. The authors do, however, provide necessary and sufficient conditions for $\bar{G} \rightarrow \widehat{C}_{4}$; to describe them requires a definition.

Definition 3.1. The crossing component graph $C_{\times}$of a geometric graph $\bar{G}$ is the abstract graph whose vertices correspond to the connected components $\bar{C}_{1}, \bar{C}_{2}, \ldots, \bar{C}_{m}$ of $\bar{G}_{\times}$, with an edge between vertices $\bar{C}_{i}$ and $\bar{C}_{j}$ if an edge of $\bar{C}_{i}$ crosses an edge of $\bar{C}_{j}$ in $\bar{G}$.

Theorem 3.1. [1] A geometric graph $\bar{G}$ is homomorphic to $\widehat{C}_{4}$ if and only if

1. $\bar{G}$ is bipartite;
2. each component $\bar{C}_{i}$ of $\bar{G}_{\times}$is a plane subgraph;
3. $C_{\times}$is bipartite.

If each component of $\bar{G}_{\times}$is a plane subgraph, then we can thickness edge color $\bar{G}_{\times}$by coloring all the edges in a given component the same
color, provided components corresponding to adjacent vertices in $C_{\times}$are assigned different colors. Moreover, in this thickness edge coloring, every vertex of $\bar{G}_{\times}$appears in only one monochromatic subgraph. Conversely, if there exists a thickness edge $m$-coloring of $\bar{G}_{\times}$in which the monochromatic subgraphs are vertex disjoint, then each component of $\bar{G}_{\times}$must be contained in a monochromatic subgraph, and hence be plane. Thus Theorem 3.1 can be rephrased more simply as follows.

Theorem 3.2. A geometric graph $\bar{G}$ is $\mathcal{C}_{4}$-geocolorable if and only if

1. $G \rightarrow K_{2}$, and
2. there exists a thickness edge 2-coloring of $\bar{G}_{\times}$in which the two monochromatic subgraphs are vertex disjoint.

## 4 Harder Case: $n=5$

From [2], the homomorphism poset $\mathcal{C}_{5}$ consists of a chain of five elements, the last of which is the convex realization $\widehat{C}_{5}$, as shown in Figure 3. Thus if $\bar{G}$ is $\mathcal{C}_{5}$-geocolorable if and only if $\bar{G} \rightarrow \widehat{C}_{5}$.


Figure 3: Homomorphism poset $\mathcal{C}_{5}$
Note that every edge of $\widehat{C}_{5}$ is a crossing edge, so $\left(\widehat{C}_{5}\right)_{\times}=\widehat{C}_{5}$. Moreover, $E X\left(\widehat{C}_{5}\right)=C_{5}$; see Figure 4, where vertex labels are in bold and edge labels are in italics. (For example, edge 1 is $\{4,5\}$.) Note that with the labeling shown, and with the understanding that all labels are modulo 5 , edge $i$ is incident with vertices $2 i+2,2 i+3$ and vertex $k$ is incident with edges $3 k-1,3 k+1$. Moreover, every vertex label is the sum of the edge labels on the vertex's two incident edges.

Hence if $\bar{G}$ is $\mathcal{C}_{5}$-geocolorable, then both $G$ and $E X(\bar{G})$ are $C_{5}$-colorable. Verifying that this necessary condition is satisfied is no easy matter, however. Maurer et al. showed in 1981 that determining whether an abstract graph is $C_{5}$-colorable is NP-complete [10]. In 1979, Vesztergombi


Figure 4: $\widehat{C}_{5}$ with vertex and edge labels
related $C_{5}$-colorability and 5 -colorability by proving that for $G$ nonbipartite, $G \rightarrow C_{5}$ if and only if $\chi\left(G \boxtimes C_{5}\right)=5$, where $\boxtimes$ denotes the strong product [11]. Combined with Vesztergombi's result, we obtain that if $\bar{G}$ is $\mathcal{C}_{5}$-geocolorable and both $G$ and $E X(\bar{G})$ are nonbipartite, then $\chi\left(G \boxtimes C_{5}\right)=\chi\left(E X(\bar{G}) \boxtimes C_{5}\right)=5$.

However, as was the case with $n=4, G \rightarrow C_{5}$ and $E X(\bar{G}) \rightarrow C_{5}$ together are not sufficient for $\bar{G}$ to be $\mathcal{C}_{5}$-geocolorable. For example, $\bar{G}$ in Figure 5 has a $C_{5}$-coloring (as indicated by the vertex labels, in bold) as well as a thickness edge $C_{5}$-coloring (as indicated by edge labels, in italics). However, since any two vertices of $\bar{G}$ are either adjacent or co-crossing, no two vertices can have the same homomorphic image. In particular, $X(\bar{G})=7$.


Figure 5: $G \rightarrow C_{5}$ and $E X(\bar{G}) \rightarrow C_{5}$, but $\bar{G} \nrightarrow \widehat{C}_{5}$
The following theorem provides necessary and sufficient conditions for $\bar{G}$ to be $\mathcal{C}_{5}$-geocolorable. Unlike Theorem 3.2, the conditions involve only thickness edge colorings, not vertex colorings.

Theorem 4.1. A geometric graph $\bar{G}$ is $\mathcal{C}_{5}$-geocolorable if and only if there exists a thickness edge $C_{5}$-coloring $\epsilon$ of $\bar{G}$ such that

1. any vertex of $\bar{G}$ belongs to at most two monochromatic subgraphs un$\operatorname{der} \epsilon$;
2. two monochromatic subgraphs can intersect (i.e. have common vertices) only if the corresponding colors are not consecutive mod 5 (equivalently, the $i$-subgraph can intersect only with the $(i+2)$-subgraph and $(i+3)$-subgraph $)$;
3. each monochromatic subgraph is bipartite and moreover, there exists a partition in the $i$-subgraph such that all vertices also in the $(i+2)$ subgraph (if any) belong to one partite set, and all those also in the $(i+3)$-subgraph (if any) belong to the other.

Proof. Assume $f: \bar{G} \rightarrow \widehat{C}_{5}$. This induces an abstract graph homomorphism $E X(\bar{G}) \rightarrow C_{5}$. We can pull back the edge colors shown in Figure 4 to obtain a thickness edge $C_{5}$-coloring on $\bar{G}$. Note that every vertex of $\widehat{C}_{5}$ is incident to edges of exactly two colors that are not consecutive $\bmod 5$, so under $\epsilon$, $\bar{G}$ must satisfy conditions (1) and (2).

Since the $i$-subgraph of $\bar{G}$ maps onto the single $i$-colored edge $\{2 i+$ $2,2 i+3\}$ of $\widehat{C}_{5}$, by transitivity it is homomorphic to $K_{2}$ and is thus bipartite. Moreover, all vertices also in the $(i+2)$-subgraph get mapped to $2 i+2$ and all vertices also in the $(i+3)$-subgraph get mapped to $2 i+3$. Hence, $\bar{G}$ satisfies (3).

For the converse, assume $\bar{G}$ has a thickness edge $C_{5}$-coloring $\epsilon$ satisfying conditions (1) - (3). First label all vertices that are in two monochromatic subgraphs with the sum of the two corresponding colors mod 5 . To label the vertices that are in only one monochromatic subgraph, say the $i$-subgraph, first break this bipartite subgraph into connected components. By condition (3), if a component has vertices that have already been labeled, then we can label the remaining vertices either $2 i+2$ or $2 i+3$ according to the partite set they are in. If a component of the $i$-subgraph has no vertices that are already labeled, then we can arbitrarily assign the the label $2 i+2$ to vertices in one partite set and $2 i+3$ to those in the other.

To show that $f$ is a graph homomorphism, let $u, v \in V(\bar{G})$ be adjacent vertices. WLOG edge $u v$ is colored $i$, so $u$ and $v$ both belong to the $i$ subgraph. WLOG again, $f(u)=2 i+2$ and $f(v)=2 i+3 \bmod 5$. Since these are consecutive $\bmod 5, f(u)$ and $f(v)$ are adjacent in $\widehat{C}_{5}$.

Next we show that $f$ is a geometric homomorphism. Suppose that in $\bar{G}$, edge $u x$ crosses edge $v y$. Since $\epsilon$ is a thickness edge $C_{5}$-coloring, crossing
edges must be assigned consecutive colors mod 5. Assume $u x$ is colored $i$ and $v y$ is colored $i+1$. Then WLOG, $f(u)=2 i+2, f(x)=2 i+3$, $f(v)=2(i+1)+2=2 i+4$ and $f(y)=2(i+1)+3=2 i$. Set $j=2 i+2$ and notice that all pairs of edges of the form $\{j, j+1\}$ and $\{j+2, j+3\}$ cross in $\widehat{C}_{5}$.

We show how this theorem can be applied to $\bar{G}$ in Figure 5. The thickness edge $C_{5}$-coloring shown violates condition (1) of the theorem because both vertices of degree 3 are incident to edges of 3 different colors. In fact, no thickness edge $C_{5}$-coloring on this geometric graph will satisfy all 3 conditions of Theorem 4.1. We being by noting that in any thickness edge $C_{5}$-coloring, any 5 -cycle of crossings will have to involve all 5 colors. WLOG, we can start with the edge colors shown in Figure 6.


Figure 6: Recoloring $\bar{G}$
Since edge $t w$ crosses edges of colors 2 and 4 , it must be colored 3. Next, vertex $u$ is incident to an edge colored 2 , so to satisfy condition (2), edge $u w$ must be colored either 2,4 or 5 . Since $u w$ crosses $v y$ which is colored 4 , $u w$ must be colored 5 . Edge $x v$ crosses edges of color 3 and 5 , so it must be colored 4. However, now vertex $x$ appears in 3 monochromatic subgraphs, violating condition (1).

Consider the graph $\bar{H}$ obtained from $\bar{G}$ by deleting $x v$, shown in Figure 7 , with edges colored as required in the previous paragraph. We still have a problem; $u$ and $z$ are vertices in the 2 -subgraph belonging also to the 5 -subgraph, yet they are an odd distance apart. Hence $\bar{H}$ is also not $\mathcal{C}_{5}$-colorable.


Figure 7: $\bar{H}$

## 5 5-geocolorability

Recall that $\bar{G}$ is n-geocolorable if and only if $\bar{G}$ is homomorphic to some realization of $K_{n}$. In [1], Boutin and Cockburn give a set of necessary but not sufficient conditions (Theorem 4), as well as a set of sufficient but not necessary conditions (Corollary 5.1 ) for $\bar{G}$ to be 4 -geocolorable. Finding necessary and sufficient conditions for a geometric graph to be 5geocolorable is likely to be even more difficult. However, the work in the previous section allows us to make some progress.

From [2], the homomorphism poset $\mathcal{K}_{5}$ is chain of length 3, with last element $\widehat{K_{5}}$, shown in Figure 8. Hence $\bar{G}$ is 5 -geocolorable if and only if $\bar{G} \rightarrow \widehat{K_{5}}$.


Figure 8: The homomorphism poset $\mathcal{K}_{5}$.
From [1], $\bar{G} \rightarrow \bar{H}$ implies $\bar{G}_{\times} \rightarrow \bar{H}_{\times}$, although the converse is false. Hence if $\bar{G}$ is 5 -geocolorable, then $\bar{G}_{\times} \rightarrow \widehat{C}_{5}$; equivalently, if $\bar{G}$ is 5 geocolorable then $\bar{G}_{\times}$is $\mathcal{C}_{5}$-geocolorable. The contrapositive is, of course,
if $\bar{G}_{\times}$is not $\mathcal{C}_{5}$-geocolorable, then $\bar{G}$ is not 5 -geocolorable.

## 6 Future Work

Finding necessary and sufficient conditions for a geometric graph to be $\mathcal{C}_{6}$-colorable is complicated by the fact that the homomorphism poset $C_{6}$ has two maximal elements, shown in Figure 9 (see [2]). The one on the left is bipartite and thickness-2, while the one on the right is bipartite and thickness-3. We investigate these in a future paper.



Figure 9: Two maximal elements of $\mathcal{C}_{6}$.

## References

[1] Debra Boutin and Sally Cockburn. Geometric graph homomorphisms. Journal of Graph Theory, 69(2):97-113, February 2012.
[2] Debra Boutin, Sally Cockburn, Alice Dean, and Andrei Margea. Posets of geometric graphs. Ars Mathematica Contemporanea, 5:265-284, 2012.
[3] Pavol Hell and Jaroslav Nes̆etřil. On the complexity of $H$-coloring. Journal of Combinatorial Theory Series B, 48:92-110, February 1990.
[4] Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, 2004.
[5] Pavol Hell, Hui Shan Zhou, and Xu Ding Zhu. Homomorphisms to oriented cycles. Combinatorics, 13(4):421-433, 1993.
[6] Pavol Hell, Hui Shan Zhou, and Xu Ding Zhu. On homomorphisms to acyclic local tournaments. J. Graph Theory, 20(4):467-471, 1995.
[7] Pavol Hell and Xu Ding Zhu. Homomorphisms to oriented paths. Discrete Math., 132(1-3):107-114, 1994.
[8] Pavol Hell and Xu Ding Zhu. The existence of homomorphisms to oriented cycles. SIAM J. Discrete Math., 8(2):208-222, 2006.
[9] H.A. Maurer, A. Salomaa, and D. Wood. Colorings and interpretations: A connection between graphs and grammar forms. Discrete Applied Mathematics, 3(2):119-135, 1981.
[10] H.A. Maurer, J.H. Sudborough, and E. Welzl. On the complexity of the general coloring problem. Information and Control, 51(2):128 145, 1981.
[11] Katalin Vesztergombi. Some remarks on the chromatic number of the strong product of graphs. Arcta Cybern., 5(2):207-212, 1979.
[12] Hui Shan Zhou. Characterization of the homomorphic preimages of certain oriented cycles. SIAM J. Discrete Math., 6(1):87-99, 1993.

