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Abstract

A geometric graph G is a simple graph G together with a straight line
drawing of G in the plane with the vertices in general position. Two
geometric realizations of a simple graph are geo-isomorphic if there is
a vertex bijection between them that preserves vertex adjacencies and
non-adjacencies, as well as edge crossings and non-crossings. A natural
extension of graph homomorphisms, geo-homomorphisms, can be used
to define a partial order on the set of geo-isomorphism classes. In this
paper, the homomorphism poset of K2,n is determined by establishing a
correspondence between realizations of K2,n and permutations of Sn, in
which edge crossings correspond to inversions. Through this correspon-
dence, geo-isomorphism defines an equivalence relation on Sn, which we
call geo-equivalence. The number of geo-equivalence classes is provided
for all n ≤ 9. The modular decomposition tree of permutation graphs
is used to prove some results on the size of geo-equivalence classes. A
complete list of geo-equivalence classes and a Hasse diagram of the poset
structure are given for n ≤ 5.

1 Introduction

A geometric graph G is a simple graph G =
(
V (G), E(G)

)
together with a straight

line drawing of G in the plane with vertices in general position (i.e. no three vertices
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are collinear) such that no three edges cross at a single point. We call such a drawing a
geometric realization of G; the term rectilinear drawing is also commonly used in the
literature. Any simple graph will have uncountably many geometric realizations, but
we identify those that have the same pattern of edge crossings. This is formalized by
extending the definition of graph isomorphism in a natural way to geometric graphs.

Definition 1.1. Let G, H be geometric realizations of simple graphs G, H respec-
tively. A geo-isomorphism f : G → H is a vertex bijection f : V (G) → V (H) such
that for all u, v, x, y ∈ V (G),

1. uv ∈ E(G) if and only if f(u)f(v) ∈ E(H), and

2. xy crosses uv in G if and only if f(x)f(y) crosses f(u)f(v) in H.

If there exists a geo-isomorphism f : G → H, we write G ∼= H. Geo-isomorphism
clearly defines an equivalence relation on the set of all geometric realizations of a
simple graph G.

Graph homomorphisms are a relaxation of graph isomorphisms; they preserve
adjacency, but not non-adjacency. First introduced almost half a century ago, they
are the subject of growing interest in graph theory circles. For an excellent survey
of this subject, see [8]. In [2], Boutin and Cockburn extended the definition of graph
homomorphisms to geometric graphs.

Definition 1.2. Let G, H be geometric realizations of simple graphs G, H respec-
tively. A geo-homomorphism f : G → H is a vertex function f : V (G) → V (H) such
that for all u, v, x, y ∈ V (G),

1. if uv ∈ E(G), then f(u)f(v) ∈ E(H), and

2. if xy crosses uv in G, then f(x)f(y) crosses f(u)f(v) in H.

Concentrating on vertex functions that satisfy (1) of Definition 1.1 and (2) of
Definition 1.2 allows us to define a relation on the set of geometric realizations of a
given graph.

Definition 1.3. Let G and Ĝ be geometric realizations of a simple graph G. Then set
G � Ĝ if and only if there exists a geo-homomorphism f : G → Ĝ whose underlying
map f : G → G is a graph isomorphism.

It is not difficult to see that this relation is both reflexive and transitive. To show
that it is anti-symmetric, observe that if f : G → Ĝ is a geo-homomorphism that
is also a graph isomorphism, then cr(G) ≤ cr(Ĝ), where cr(G) denotes the number

of edge crossings in G. Hence, if we also have Ĝ � G, then cr(G) = cr(Ĝ). This
implies thatf is in fact a geo-isomorphism, so the relation defined above is in fact a
partial order.

Definition 1.4. The homomorphism poset G of a simple graph G is the set of geo-
isomorphism classes of its geometric realizations partially ordered by the relation
above.
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In [3], Boutin, Cockburn, Dean and Margea determined the homomorphism
posets for paths Pn, cycles Cn and cliques Kn, for all n ≤ 6. One result of in-
terest in this paper involves the rectilinear crossing number of a graph G, sometimes
denoted cr(G), defined as the minimum number of edge crossings over all possible
geometric realizations of G. Clearly, if cr(G) = cr(G), then G is a minimal element in
G. However, the converse is false; K6 has five minimal elements, one with cr(K6) = 3
edge crossings, but also one with 4 edge crossings, two with 5 edge crossings and one
with 6 edge crossings.

Our goal in this paper is to determine the homomorphism poset K2,n of one
family of complete bipartite graphs. For small values of n, this is easy. Up to geo-
isomorphism, there is only one realization of K2,1 and so K2,1 is trivial. There are
only two realizations of K2,2, one with no crossings and one with exactly one crossing.
The vertex labels in Figure 1 indicate a geo-homomorphism that shows that K2,2 is
a 2-element chain.

1

2
1 2

a b
a b

Figure 1: The homomorphism poset K2,2.

For n > 2, certainly a plane representation of K2,n will still be the first element
of K2,n, but the rest of the homomorphism poset is less obvious. To systematize
our study, we develop a correspondence between geometric realizations of K2,n and
permutations in Sn, defined in Section 2, in which edge crossings correspond to
inversions. In Section 3, we give necessary and sufficient conditions for two per-
mutations to correspond to geo-isomorphic realizations; we call such permutations
geo-equivalent. These conditions can be efficiently expressed using a directed version
of permutation graphs. The section includes a complete list of the geo-equivalence
classes of Sn for n = 4 and 5, as well as the number of geo-equivalence classes for
all n ≤ 9. The poset structure of K2,n is determined in Section 4, which includes
Hasse diagrams for K2,4 and K2,5. We compare the corresponding poset structure of
the geo-equivalence classes of Sn with that induced by the weak Bruhat order. Some
results on the size of geo-equivalence classes are given in Section 5, based on the
structure of the modular decomposition tree of the permutation digraph. We close
with some open questions in Section 6.

Throughout this paper, the vertex set of K2,n is denoted by U = {a, b} and
Vn = {1, 2, . . . , n}.

2 Permutations and Realizations of K2,n

For any π ∈ Sn, we define a corresponding geometric realization of K2,n, denoted
K2,n(π), as follows. We start with a template; from each of the points a and b in R

2,
draw n intersecting rays, on the same side of the line ab. Label the rays emanating
from b consecutively 1 through n; label the rays emanating from a with π(1) through
π(n), as in Figure 2.
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a b

1

2

3

4

n

π(4)

π(n)

π(3)

π(2)

π(1)

Figure 2: Template for the construction.

For each i ∈ Vn, position vertex i at the intersection of the rays ai and bi on the
template. With all the vertices in place, add the appropriate edges. For example,
Figure 3 illustrates the realization of K2,4 corresponding to π = 2431. (We express
permutations in word form, π = π(1)π(2) . . . π(n), unless otherwise noted.)

a b

1
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3

4

2
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3

4

a b

1
2

3
4

Figure 3: The realization K2,4(2431).

We would like to relate geometric properties of the realization K2,n(π) to com-
binatorial properties of the permutation π. To this end, recall that an inversion in
a permutation is an instance of a smaller number appearing after a larger number.
For example, 2431 contains exactly four inversions: 1 appears after 2, 3 and 4, and 3
appears after 4. We state this definition more formally.

Definition 2.1. Let i, j ∈ {1, 2, . . . , n} and let π ∈ Sn. Then (i, j) is an inversion
in π if and only if i < j and π−1(i) > π−1(j). The set of inversions of π is denoted
by E(π) (also called the inversion set of π).

A useful result that follows immediately from the definition is

(i, j) ∈ E(π) ⇐⇒ (
π−1(j), π−1(i)

) ∈ E(π−1),

or equivalently,
(k, l) ∈ E(π−1) ⇐⇒ (

π(l), π(k)
) ∈ E(π).
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Returning to our example, we have E(2431) =
{
(1, 2), (1, 3), (1, 4), (3, 4)

}
. From

Figure 3, we can see that in K2,4(2431), b1 crosses a2, a3 and a4 and b3 crosses a4 .
Moreover, these are the only crossings. This observation generalizes.

Theorem 2.2. Let π ∈ Sn and i, j ∈ {1, 2, . . . , n}. Then bi crosses aj in K2,n(π) if
and only if (i, j) ∈ E(π).

Proof. This result is obvious if we focus on the portion of the construction involving
only vertices i = π(k) and j = π(l); see Figure 4. Up to geometric isomorphism, we
get the subgraph on the left when k > l, or equivalently, π−1(i) > π−1(j), which by
definition is when (i, j) ∈ E(π). If k < l, then π−1(i) < π−1(j), and so (i, j) 	∈ E(π).
In this case, we get the subgraph on the right.

a b

i

i=π(l)

j=π(k)

j

i j

a b

i

j

i

j

j=π(l)

i=π(k)

Figure 4: Inversions correspond to crossings.

Figure 4 also shows that if i < j, then ai can never cross bj in K2,n(π) for any
π ∈ Sn.

Corollary 2.3. Let π, σ ∈ Sn.

1. The total number of crossings in K2,n(π) is |E(π)|.
2. If K2,n(σ) ∼= K2,n(π), then |E(σ)| = |E(π)|.

Proof. The first statement follows immediately from Theorem 2.2; the second follows
from the fact that geo-isomorphisms preserve total number of crossings.

Next, we show that any geometric realization of K2,n is geo-isomorphic to K2,n(π)
for some π ∈ Sn. Start with a (labeled) realization of K2,n in the plane. The line
� through points a, b divides the plane into two half-planes. Arbitrarily select one
half-plane and suppose it contains {i1, . . . it} ⊆ Vn (where 0 < t ≤ n). For each
1 ≤ j ≤ t, let θb(j) denote the angle ∠abij. Since the vertices are in general position,
we can arrange these angles in strictly increasing order:

0 < θb(j1) < θb(j2) < · · · < θb(jt) < 180o.

Re-label vertex ijk
with k, so that now 0 < θb(1) < θb(2) < · · · < θb(t) < 180o.

Next, let θa(j) = ∠baj. Arranging these angles in strictly increasing order induces a
permutation of {1, . . . , t},

0 < θa

(
π(1)

)
< θa

(
π(2)

)
< · · · < θa

(
π(t)

)
< 180o.
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If t = n, we stop. If t < n, re-label the remaining vertices t + 1, . . . , n so that
0 < θb(t + 1) < θb(t + 2) < · · · < θb(n) < 180o. Again, arranging the angles θa(j) in
increasing order induces a permutation on {t + 1, . . . , n},

0 < θa

(
π(t + 1)

)
< θa

(
π(t + 2)

)
< · · · < θa

(
π(n)

)
< 180o.

Figure 5 illustrates the re-labeling protocol on a particular realization of K2,8. The
corresponding induced permutation is π = 54231867.
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~=
Figure 5: Re-labeling vertices of a realization of K2,8.

Proposition 2.4. If the vertices of a geometric realization K2,n are re-labeled as
above, with corresponding induced permutation π, then K2,n

∼= K2,n(π).

Proof. By Theorem 2.2, it suffices to show that for all 1 ≤ i < j ≤ n, bi crosses aj
in K2,n if and only if (i, j) ∈ E(π).

First note that if i ≤ t < j, then by the re-labeling protocol, i and j are on
opposite sides of line �, and so bi cannot cross aj. The construction forces i = π(k)
for some k ∈ {1, . . . , t} and j = π(l) for some l ∈ {t + 1, . . . , n}. Hence k < l,
meaning π−1(i) < π−1(j), and so (i, j) 	∈ E(π).

Next, assume 1 ≤ i < j ≤ t or t+ 1 ≤ i < j. This means that θb(i) < θb(j). It is
not difficult to see that bi crosses aj if and only if θa(i) > θa(j). Letting k = π−1(i)
and l = π−1(j), this is equivalent to θa

(
π(k)

)
> θa

(
π(l)

)
. By construction, this

occurs if and only if k > l. By definition, this is true if and only if (i, j) ∈ E(π).

Applying this to the case n = 3, we conclude that the number of different geo-
metric realizations of K2,3 is at most |S3| = 6. Visual inspection of Figure 6 makes
clear that in fact there are only 4 geo-isomorphism classes. The question we address
in the next section is: when do two permutations induce geo-isomorphic realizations?

Note that we can use geo-isomorphism to define an equivalence relation directly
on Sn by setting

σ ∼ π ⇐⇒ K2,n(σ) ∼= K2,n(π).
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Figure 6: Realizations of K2,3.

We will denote the geo-equivalence class of π by [π]. Similarly, we can define a partial
order on the set of all geo-equivalence classes of Sn by

[σ] � [π] ⇐⇒ K2,n(σ) � K2,n(π) in K2,n.

We denote the resulting poset by [Sn]. From the above, [S3] is the chain

[123] ≺ [213] ≺ [231] ≺ [321].

3 Geo-equivalence Classes

In this section, we determine necessary and sufficient conditions for two permutations
to be geo-equivalent. We begin by defining an action of permutations on inversion
sets.

Definition 3.1. Let σ, ρ ∈ Sn. For all (i, j) ∈ E(σ), let

ρ ∗ (i, j) =

{(
ρ(i), ρ(j)

)
if ρ(i) < ρ(j);(

ρ(j), ρ(i)
)

if ρ(i) > ρ(j).

We say ρ is order-preserving on (i, j) in the first case, and order-reversing on (i, j)
in the second. We let ρ ∗ E(σ) denote the set {ρ ∗ (i, j) | (i, j) ∈ E(σ)}.

The image of an inversion set under the action of a permutation may or may not
itself be an inversion set. We consider three illustrative examples.

Example 3.2. If σ1 = 3214 and ρ1 = 2341, then

E(σ1) = {(1, 2), (1, 3), (2, 3)}
ρ1 ∗ E(σ1) = {(2, 3), (2, 4), (3, 4)} = E(1432).

Note that ρ1 is order-preserving on all inversions of σ1.
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Example 3.3. Let σ2 = 4312 and ρ2 = 2341; then

E(σ2) = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
ρ2 ∗ E(σ2) = {(2, 4), (3, 4), (1, 4)} ∪ {(1, 2), (1, 3)}

= E(4231).

In this case, ρ2 is order-preserving on some inversions of σ2 and order-reversing on
others.

Example 3.4. Let σ3 = 2413 and ρ3 = 1324; then

E(σ3) = {(1, 2), (1, 4), (3, 4)}
ρ3 ∗ E(σ3) = {(1, 3), (1, 4), (2, 4)}.

In this case, ρ3 is order-preserving on all inversions of σ3. However, the image is
not the inversion set of any permutation. To prove this, we need some additional
background (an excellent overview of which can be found in Chapter 7 of [6]).

The inversions of a permutation π ∈ Sn can be recorded in a graph G(π), on
vertices Vn = {1, 2, . . . , n}, with i < j adjacent if and only if (i, j) ∈ E(π). More
generally, we have the following definition.

Definition 3.5. A graph G = (V, E) on n vertices is a permutation graph if and
only if there exists a bijection L : V → {1, 2, . . . , n} and a permutation π ∈ Sn such
that L : G → G(π) is a graph isomorphism. In this case, we say G represents π.

Permutation graphs are related to another family of graphs, defined below.

Definition 3.6. A graph G = (V, E) is transitively orientable if and only if its
edges can be assigned an orientation F so that in the directed graph D = (V, F ),
(u, v), (v, w) ∈ F implies (u, w) ∈ F .

In 1971, Pneuli, Lempel and Even proved the following characterization of per-
mutation graphs.

Theorem 3.7. [13] A graph G is a permutation graph if and only if both G and its
complement Gc are transitively orientable.

We can rephrase this result in a way that allows us to quickly recognize when a
set of ordered pairs is the inversion set of a permutation.

Corollary 3.8. Let Un =
{
(i, j) | 1 ≤ i < j ≤ n

}
, where n ≥ 2, and let A ⊆ Un.

Then A = E(π) for some π ∈ Sn if and only if for all i < j < k,

1. (i, j) ∈ A and (j, k) ∈ A =⇒ (i, k) ∈ A;

2. (i, j) ∈ Ac and (j, k) ∈ Ac =⇒ (i, k) ∈ Ac.
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An immediate consequence of this result is that the complement of an inversion
set in Un is also an inversion set; in fact [E(π)]c = E(πc), where πc is the ‘reverse’ of
π, given by πc = π(n)π(n − 1) . . . π(1).

Returning to Example 3.4, we conclude that ρ3 ∗ E(σ3) = {(1, 3), (1, 4), (2, 4)}
is not an inversion set, as (1, 2), (2, 3) ∈ (

ρ3 ∗ E(σ3)
)c

, yet (1, 3) 	∈ (
ρ3 ∗ E(σ3)

)c
,

violating condition (2) of Corollary 3.8. Although the image of an inversion set is
not always itself an inversion set, we do have the following result.

Proposition 3.9. For all σ, ρ ∈ Sn, the image of E(σ) under the action of ρ is the
symmetric difference,

ρ ∗ E(σ) =
[
E(ρ · σ)\E(ρ)

] ∪ [
E(ρ)\E(ρ · σ)

]
.

More precisely,

E(ρ · σ)\E(ρ) =
{(

ρ(i), ρ(j)
) | (i, j) ∈ E(σ) and ρ(i) < ρ(j)

}
, and

E(ρ)\E(ρ · σ) =
{(

ρ(j), ρ(i)
) | (i, j) ∈ E(σ) and ρ(i) > ρ(j)

}
.

Proof. If (k, l) ∈ E(σ), then k < l and σ−1(k) > σ−1(l). If ρ(k) < ρ(l), then it is
simply a matter of applying the definition to show that ρ ∗ (k, l) ∈ E(ρ · σ)\E(ρ).
Similarly, if ρ(k) > ρ(l), then ρ ∗ (k, l) ∈ E(ρ)\E(ρ · σ).

Conversely, if (i, j) ∈ E(ρ · σ)\E(ρ), then

ρ−1(i) < ρ−1(j) and σ−1 · ρ−1(i) > σ−1 · ρ−1(j),

meaning that (ρ−1(i), ρ−1(j)) ∈ E(σ); clearly ρ ∗ (
ρ−1(i), ρ−1(j)

)
= (i, j). Similarly

if (i, j) ∈ E(ρ)\E(ρ · σ), then

ρ−1(i) > ρ−1(j) and σ−1 · ρ−1(i) < σ−1 · ρ−1(j),

meaning that (ρ−1(j), ρ−1(i)) ∈ E(σ) and ρ ∗ (
ρ−1(j), ρ−1(i)

)
= (i, j).

Note that if ρ is order-preserving on all inversions of σ, then ρ ∗ E(σ) will never
violate condition (1) of Corollary 3.8. For suppose (k, l), (l, m) ∈ ρ ∗ E(σ), where
k < l < m. Since ρ preserves order, there exist i < j < h such that

(k, l) =
(
ρ(i), ρ(j)

)
, (l, m) =

(
ρ(j), ρ(h)

)
and (i, j), (j, h) ∈ E(σ).

Since E(σ) satisfies (1), (i, h) ∈ E(σ) and so
(
ρ(i), ρ(h)

)
= (k, m) ∈ ρ ∗E(σ). It can

be shown similarly that if ρ is order-reversing on all inversions of σ, then ρ ∗ E(σ)
satisfies condition (1).

We are now ready for the main theorem of this section.

Theorem 3.10. Let σ, π ∈ Sn. Then σ ∼ π if and only if there exists ρ ∈ Sn such
that
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1. ρ ∗ E(σ) = E(π);

2. ρ is either order-preserving on E(σ) or order-reversing on E(σ).

Proof. Assume σ ∼ π. Then by definition, there exists a geo-isomorphism
f : K2,n(σ) → K2,n(π). Let ρ = f |Vn∈ Sn. First suppose f(a) = a and f(b) = b. By
Theorem 2.2 and the definition of geo-isomorphism,

(i, j) ∈ E(σ) ⇐⇒ bi crosses aj in K2,n(σ)

⇐⇒ bρ(i) crosses aρ(j) in K2,n(π)

⇐⇒ (
ρ(i), ρ(j)

) ∈ E(π).

This implies both that ρ is order-preserving on E(σ) and that ρ ∗ E(σ) = E(π). If
f(a) = b and f(b) = a, then bi crosses aj in K2,n(σ) if and only if aρ(i) crosses bρ(j)
in K2,n(π); in this case,

(i, j) ∈ E(σ) ⇐⇒ (
ρ(j), ρ(i)

) ∈ E(π).

In this case, ρ ∗ E(σ) = E(π) and ρ is order-reversing on E(σ).

Conversely, assume ρ ∗ E(σ) = E(π) and ρ is order-preserving on E(σ). Define
g : K2,n(σ) → K2,n(π) by g(a) = a, g(b) = b and g(i) = ρ(i) for all i ∈ Vn. For i < j,
we have

bi crosses aj in K2,n(σ) ⇐⇒ (i, j) ∈ E(σ)

⇐⇒ (
ρ(i), ρ(j)

) ∈ E(π)

⇐⇒ bρ(i) crosses aρ(j) in K2,n(π)

⇐⇒ g(b)g(i) crosses g(a)g(j) in K2,n(π).

Therefore g is a geo-isomorphism. If ρ is order-reversing on E(σ), then we adapt this
argument by setting g(a) = b, g(b) = a and g(i) = ρ(i) for all i ∈ Vn.

Applying this theorem to Example 3.2, we conclude 1432 ∼ 3214, or equivalently,
K2,4(1432) ∼= K2,4(3214). Example 3.3 illustrates the importance of condition (2) in
Theorem 3.10; even though there exists a ρ ∈ Sn satisfying ρ ∗ E(4312) = E(4312),
the realizations of K2,4 corresponding to these two permutations (shown in Figure
7) are not geo-isomorphic. One way to see this is to note that both edges incident
to vertex 3 in K2,4(4231) are crossed exactly once, but no vertex in K2,4(4312) has
this property.

Corollary 3.11. For all π ∈ Sn, π−1 ∼ π via π, which is order-reversing.

Proof. This follows directly from our earlier observation that

(k, l) ∈ E(π−1) ⇐⇒ (
π(l), π(k)

) ∈ E(π).
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a b

1 2

3

4

K (4231)
2,4

a b

1

2

3 4

K (4312)
2,4

Figure 7: Importance of condition (2) in Theorem 3.10.

Example 3.12. Let π = 3142; then π−1 = 2413. In this case, π−1 = πc, and so

E(π−1) = [E(π)]c = {(1, 2), (1, 4), (3, 4)}.
We get π ∗ E(π−1) = {(1, 3), (2, 3), (2, 4)} = E(π), with the action of π reversing
order on E(π−1). However, it is also true in this case that π−1 ∗ E(π−1) = E(π),
with the action of π−1 preserving order on E(π−1).

Corollary 3.13. For all π ∈ Sn, π ∼ ((πc)−1)c via (πc)−1, which is order-preserving.

Proof. For 1 ≤ i < j ≤ n,

(i, j) ∈ E(π) ⇐⇒ (i, j) 	∈ [E(π)]c ⇐⇒ (i, j) 	∈ E(πc)

⇐⇒ (πc)−1(i) < (πc)−1(j).

This shows that (πc)−1 is order-preserving on E(π). Next, for 1 ≤ k < l ≤ n,

(k, l) ∈ E
(
((πc)−1)c

) ⇐⇒ (k, l) 	∈ E((πc)−1)

⇐⇒ πc(k) < πc(l).

Replacing k with (πc)−1(i) and l with (πc)−1(j), we get

((πc)−1(i), (πc)−1(j)) ∈ E
(
((πc)−1)c

) ⇐⇒ (πc)−1(i) < (πc)−1(j) and i < j

⇐⇒ (i, j) ∈ E(π).

We can combine the last two corollaries to obtain the following.

Corollary 3.14. For all π∈ Sn, the permutations π, π−1, ((πc)−1)c and (((πc)−1)c)−1

are all geo-equivalent.

Example 3.15. By Corollary 3.14,

π = 2431, π−1 = 3142, ((πc)−1)c = 3241 and ((πc)−1)c)−1 = 4213

are all geo-equivalent.

The four permutations in Corollary 3.14 may not all be distinct. In Example 3.12,
we saw that for π = 3142, π−1 = 2413 = πc, so

((πc)−1)c = π−1 and (((πc)−1)c)−1 = π.

For π = 3412, we have π = π−1 = ((πc)−1)c = (((πc)−1)c)−1.
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Recall that for all π ∈ Sn, G(π) has vertices Vn = {1, 2, . . . , n} and edges
{ij | (i, j) ∈ E(π)}. Thus G(σ) is isomorphic to G(π) if and only if there exists
ρ ∈ Sn such that ρ ∗ E(σ) = E(π); that is, G(σ) ∼= G(π) as abstract graphs if and
only if condition (1) of Theorem 3.10, but not necessarily condition (2) of Theo-
rem 3.10, is satisfied. In particular, Example 3.3 shows that G(4312) ∼= G(4231),
yet 4312 	∼ 4231. Thus the number of geo-equivalence classes of Sn may exceed the
number of non-isomorphic permutation graphs on n vertices.

We can rephrase Theorem 3.10 in the language of permutation graphs by in-
troducing a directed version of G(π). More precisely, for all π ∈ Sn, we let D(π)
denote the digraph with vertex set Vn = {1, 2, . . . , n} and arc set E(π). We will
call a digraph D = (V, F ) a permutation digraph if and only if D ∼= D(π) for some
permutation π; in this case, we say D represents π.

Lemma 3.16. Let D = (V, F ) be a digraph and let −D = (V,−F ) denote the digraph
obtained by reversing direction on all arcs of D. If D ∼= D(π) for some π ∈ Sn, then
−D ∼= D(π−1).

Proof. Suppose L : V → {1, 2, . . . , n} is a bijection establishing D ∼= D(π); that is,

(u, v) ∈ F ⇐⇒ (
L(u), L(v)

) ∈ E(π).

By Corollary 3.13, (i, j) ∈ E(π) ⇐⇒ (π−1(j), π−1(i)
) ∈ E(π−1). Hence the

bijection π−1 ◦ L : V → {1, 2, . . . , n} establishes −D ∼= D(π−1).

Theorem 3.17. Let π, σ ∈ Sn. Then σ ∼ π if and only if either D(σ) ∼= D(π) or
D(σ) ∼= D(π−1).

Proof. If there exists ρ ∈ Sn such that ρ ∗ E(σ) = E(π), with ρ preserving order on
E(σ), then ρ is also a digraph isomorphism D(σ) → D(π). If ρ is order-reversing on
E(σ), then π−1◦ρ : D(σ) → D(π−1) is a digraph isomorphism. Conversely, a digraph
isomorphism γ : D(σ) → D(π) must be an element of Sn satisfying γ ∗E(σ) = E(π),
with γ preserving order on E(σ). If the digraph isomorphism is γ : D(σ) → D(π−1),
then (π ◦ γ) ∗ E(σ) = E(π), with π ◦ γ reversing order on E(σ).

1

3

4 2

D(3421)

1

3

4 2

D(4231)

1

3

4 2

D(4312)

Figure 8: Some permutation digraphs.

Figure 8 illustrates the previous two results. First note that the underlying undi-
rected graphs are the same, so G(3421) ∼= G(4312) ∼= G(4231); up to isomorphism,
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there is only one permutation graph on 4 vertices with 5 edges (namely K4 − e,
sometimes called the diamond). The first two digraphs, D(3421) and D(4312), are
‘reverses’ of each other, as expected from the fact that (3421)−1 = 4312. The third
digraph, D(4231), is not isomorphic to either of the previous two. Note that revers-
ing the direction on all arcs of D(4231) yields an isomorphic digraph, as expected
from the fact that (4231)−1 = 4231. We conclude that the permutations of S4

with 5 inversions divide into two geo-equivalence classes: [3421] = {3421, 4312} and
[4231] = {4231}.

Theorem 3.17 suggests that to determine the geo-equivalence classes of Sn, we
must determine the isomorphism classes of permutation digraphs on n vertices, and
additionally identify a digraph D with its reverse, −D. Following Colbourn (see [5]),
we call a permutation graph uniquely orientable if and only if it admits only one
transitive orientation and its reverse. Furthermore, we make the following definition.

Definition 3.18. Two permutations digraphs D1 and D2 are related if and only if
either D1

∼= D2 or D1
∼= −D2; otherwise they are unrelated.

Using this terminology, the number of geo-equivalence classes of Sn is the number
of unrelated permutation digraphs on n vertices. Table 1 gives the partitioning of S4

into geo-equivalence classes. There are 11 non-isomorphic (undirected) graphs on 4
vertices and all of them are permutation graphs. The only one that is not uniquely
orientable is the one in Figure 8, giving 12 geo-equivalence classes in total.

Table 1: Geo-equivalence classes of S4.

inversions digraphs permutations

0

1

1234

1243, 1324, 2134

21432

3

1432, 3214

2413, 3142

4 3412

5

4231

43216

2341 4123

4132, 4213 2431, 3241

3421 4312

2314, 1342 1423, 3124

class label
0.1

3.3

4.1

4.2

5.1

5.2

6.1

3.1

2.2

2.1

1.1

3.2

Progressing to n = 5, there are 34 non-isomorphic graphs in total, but one of
them, C5, is not transitively orientable and is therefore not a permutation graph. Of
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the remaining 33 graphs, 27 are uniquely orientable and the remaining 6 have exactly
two unrelated orientations, as shown in Figure 9. Thus, S5 has 39 geo-equivalence
classes in total; these are given in Table 2 in the Appendix.

5.5 5.6 6.76.6 7.4 7.5

8.1 8.2 8.3 8.4 9.1 9.2

Figure 9: Six permutations graphs, n = 5, each with 2 unrelated transitive orienta-
tions.

From the geo-equivalence classes for n = 3, 4 and 5, one might conjecture that
involutions (i.e. permutations of order two) can only be geo-equivalent to other in-
volutions. However, a counterexample exists at n = 6; π = 465132 is an involution
(in cycle notation, π = (14)(26)(35)), σ = 465213 is the 6-cycle (142635), yet σ ∼ π
via ρ = 231456.

We can write a program based on Theorem 3.10 to determine geo-equivalence
classes for larger values of n. If we let an denote the number of geo-equivalence
classes in Sn (where n ≥ 1), then the first nine terms of the integer sequence (an)
are:

1, 2, 4, 12, 39, 182, 1033, 7605, 66302, ...

Interestingly, this does not match any other sequence in the Online Encyclopedia of
Integer Sequences. However, implementing this theorem involves testing n! permuta-
tions as candidates for ρ, and it is therefore very inefficient. (However, the interested
reader may find both C++ and Python code for this algorithm at entry A180487 in
OEIS [12].)

For an approach based on Theorem 3.17, we might start with pn ≤ an, where pn

is the number of permutation graphs on n vertices. However, neither a closed nor a
recursive formula for pn is known. Evens, Lempel and Pnueli [13] gave a polynomial-
time algorithm for recognizing permutation graphs in 1971, and ten years later,
Colbourne [5] gave a polynomial-time algorithm for determining if two permutation
graphs are isomorphic. More recently, progress has been made on the enumeration
of certain subclasses of permutation graphs. In 1999, Guruswami [7] gave a gen-
erating function for the number of non-isomorphic cographs and threshold graphs.
(We will discuss cographs further in Section 5.) Koh and Ree [9] found a recurrence
relation for the number of vertex-labeld connected permutation graphs in 2007, and
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in 2009, Saitoh, Otachi, Yamanaka and Uehara [14] developed a linear time algo-
rithm for generating and enumerating non-isomorphic bipartite permutation graphs.
Using this approach to investigate an must wait until further progress is made in
determining pn.

4 Poset Structure

Recall that for σ, π ∈ Sn,

[σ] � [π] in [Sn] ⇐⇒ K2,n(σ) � K2,n(π) in K2,n,

which holds if and only if there is a geo-homomorphism f : K2,n(σ) → K2,n(π)
whose underlying map is a graph isomorphism. For strict precedence, K2,n(σ)
must have strictly fewer edge crossings than K2,n(π); equivalently, by Theorem 2.2,
|E(σ)| < |E(π)|. The proof of Theorem 3.10 can easily be modified to yield the
following.

Proposition 4.1. Let σ, π ∈ Sn. Then [σ] ≺ [π] if and only if there exists ρ ∈ Sn

such that

1. ρ ∗ E(σ) ⊂ E(π);

2. ρ is either order-preserving on E(σ) or order-reversing on E(σ).

Of course, this result can be rephrased in terms of permutation digraphs.

Proposition 4.2. Let σ, π ∈ Sn. Then [σ] ≺ [π] if and only if D(σ) is isomorphic
to a proper directed subgraph of either D(π) or D(π−1).

Corollary 4.3. For all n, [Sn] is a bounded poset, with first element [12 · · · n] and
last element [n(n− 1)(n − 2) · · · 1].

Proposition 4.2 and visual inspection of the digraphs in Table 1 determine the
poset structure of [S4]; the Hasse diagram of this poset is given in Figure 10. Sim-
ilarly, the industrious reader can fill in diagrams for the 39 geo-equivalence classes
for n = 5 in Table 2 in the Appendix to obtain the poset structure of [S5]; the
corresponding Hasse diagram is given in Figure 11.

We compare this order on the geo-equivalence classes of Sn to that induced by
the weak left and right Bruhat orders, whose definitions we recall below. (For more
on these orders, see [1]).

Definition 4.4. Let σ, π ∈ Sn. Then σ strictly precedes π

• in the weak left Bruhat order if and only if E(σ) ⊂ E(π);

• in the weak right Bruhat order if and only if E(σ−1) ⊂ E(π−1).
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6.1

4.14.2

3.13.2 3.3

2.12.2

1.1

0.1

5.15.2

Figure 10: The poset [S4] (K2,4).

By Proposition 4.2, if σ strictly precedes π in either the weak left Bruhat order
or the weak right Bruhat order, then [σ] ≺ [π] in [Sn]. In other words, the partial
order on [Sn] is an extension of the order induced by the left and right weak Bruhat
orders.

Proposition 4.5. [1] Let σ, π ∈ Sn and let τi denote the adjacent transposition
i ↔ i + 1 . Then π covers σ in

1. the weak left Bruhat order ⇐⇒ (σ(i), σ(i+1)) 	∈ E(σ) and π = σ · τi for some
1 ≤ i < n;

2. the weak right Bruhat order ⇐⇒ (i, i + 1) 	∈ E(σ) and π = τi · σ for some
1 ≤ i < n.

Example 4.6. By Proposition 4.5, σ = 25314 is covered in the weak left Bruhat
order by

25314 · τ1 = 52314 and 25314 · τ4 = 25341,

and in the weak right Bruhat order by

τ2 · 25314 = 35214 and τ3 · 25314 = 25413.

From Table 2, [σ] = {σ, σ−1} = {25314, 41352}; by Proposition 4.5, 41352 is covered
in the weak left Bruhat order by

41352 · τ2 = 43152 and 41352 · τ3 = 41532.

and in the weak right Bruhat order by
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7.17.2 7.57.37.4

6.66.2 6.76.1 6.46.36.5

4.64.4 4.14.3 4.24.5

3.4 3.13.2 3.3

2.12.2

1.1

0.1

10.1

9.29.1

8.18.4 8.28.3

5.55.3 5.15.4 5.65.2

Figure 11: The poset [S5] (K2,5).

τ1 · 41352 = 42351 and τ4 · 41352 = 51342.

In terms of the class labels given in Table 2, the only covering relationships in [Sn]
induced from the weak Bruhat orders are

5.3 ≺ 6.3 and 5.3 ≺ 6.7.

However, ρ = 23415 is order-preserving on E(σ) and

ρ ∗ E(σ) = {(2, 3), (2, 4), (2, 5), (4, 5), (1, 5)}.
This is not itself an inversion set (because its complement is not transitive), but it is
a proper subset of E(35142). Thus by Proposition 4.1, we also have 5.3 ≺ 6.5. This
demonstrates that the partial order in [Sn] is a proper extension of that induced by
the weak Bruhat orders.

5 Size of Geo-equivalence Classes

In this section, we develop a method for determining the size of the geo-equivalence
class represented by a given permutation digraph. A useful tool for this investigation
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is modular decomposition, which we briefly review below. Although this theory can
be traced back to a seminal 1967 paper by Gallai [10], we use the more modern
terminology and notation that can be found in Brandstadt, Le and Spinrad [4] or
McConnell [11].

Definition 5.1.

1. A module of a graph G = (V, E) is a set of vertices M such that any vertex
outside M is either adjacent to every vertex in M , or not adjacent to any vertex
in M . More formally, for all v ∈ V \M , either uv ∈ E for all u ∈ M , or uv ∈ Ec

for all u ∈ M .

2. Two modules M and N overlap if and only if M ∩N , M\N and N\M are all
non-empty.

3. A module M is strong if and only if it does not overlap with any other module
of G; otherwise it is weak.

For any graph G, V and {v} for all v ∈ V are modules (in fact, strong modules);
they are called trivial modules. Note that the modules (and strong modules) of G
and Gc are the same.

We can recursively partition the vertex set of a graph G = (V, E) into its strong
modules using the following algorithm. We use G[M ] to denote the subgraph of G
induced by M . We begin the algorithm with M = V .

1. If |M | = 1, then stop.

2. If G[M ] is disconnected, then partition M into its connected components.

3. If G[M ] is connected, but Gc[M ] is disconnected, partition M into the con-
nected components of Gc[M ].

4. If both G[M ] and Gc[M ] are connected, then M can be partitioned into its
maximal submodules (which will be strong modules of G).

The modular decomposition tree of G has the strong modules of G as its nodes,
with V being the root node, and the children of a node M being the strong modules
in the partition of M from the algorithm above. Every leaf in this tree is a singleton
set, {v}. An internal node M in the tree is called:

• a degenerate 0-node if G[M ] is disconnnected;

• a degenerate 1-node if G[M ] is connected, but Gc[M ] is disconnected;

• a prime node if both G[M ] and Gc[M ] are connected.
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Every weak module of G is a union of children of degenerate node, and conversely,
every union of children of a degenerate node is a weak module. Note that a degenerate
0-node of G is a degenerate 1-node of Gc, and vice versa.

To every internal node M of the modular decomposition tree of G = (V, E), we
associate a quotient graph Q(M), whose vertices are the children of M , with two
children X and Y being adjacent if and only if xy ∈ E for some x ∈ X and y ∈ Y .
Note that by definition of a module, xy ∈ E for some x ∈ X, y ∈ Y if and only if
xy ∈ E for all x ∈ X, y ∈ Y . It follows directly from the definitions that if M is a
degenerate 0-node, then Q(M) is a null graph, and if M is a degenerate 1-node with
k children, then Q(M) is a complete graph on k vertices.

Lemma 5.2. [10] [11] If X and Y are adjacent children of either a degenerate 1-node
or a prime node, then in any transitive orientation F of G, all edges between X and
Y must be oriented the same way (i.e. either X × Y ⊆ F or Y × X ⊆ F ).

Thus any transitive orientation on the edges of G unambiguously restricts to
a transitive orientation on each quotient graph Q(M). Conversely, Gallai showed
that any set of transitive orientations on the quotient graphs extends in the obvious
way to a transitive orientation on G. Since complete graphs are always transitively
orientable, we conclude that G is transitively orientable if and only if for every prime
node M of G, Q(M) is transitively orientable.

Proposition 5.3. [10] Let M be a prime node of the modular decomposition tree of
G. If Q(M) is transitively orientable, then it is uniquely orientable.

Putting all of these facts together, we can determine the number of different
transitive orientations on a vertex-labeled transitively orientable graph.

Corollary 5.4. Let G = (V, E) be a transitively orientable graph. Suppose the
internal nodes of the modular decomposition tree of G consist of:

• prime nodes P1, P2, . . . , Ps;

• degenerate 1-nodes N1, . . . , Nt, where Ni has ki children;

• degenerate 0-nodes M1, . . . , Mr.

Then G has 2s · k1! · k2! · · · kt! different transitive orientations.

Note that this number counts any transitive orientation F and its reverse −F as
different orientations: isomorphic orientations are also counted as different. Hence,
this is not the number of unrelated transitive orientations on G, only an upper bound.

Recall that a graph G is a permutation graph if and only if both G and Gc

are transitively orientable. In [13], Evens, Lempel and Pnueli give an algorithm
that takes as input transitive orientations F, F1 on G, Gc respectively, and outputs a
permutation π such that (V, F ) ∼= D(π) (i.e. a permutation represented by (V, F )).
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First they show that superimposing the two orientations yields a transitively oriented
complete graph, (V, F∪F1). Associated with this orientation on Kn is a unique vertex
labeling function L : V → {1, . . . , n} satisfying

L(v) < L(w) ⇐⇒ (v, w) ∈ F ∪ F1. (1)

Since F and F1 are both transitive, by Corollary 3.8 there exists a unique permutation
π such that {(

L(v), L(w)
) ∣∣ (v, w) ∈ F

}
= E(π). (2)

We say π is the permutation induced by F ∪ F1, or equivalently, F ∪ F1 induces π.
Note that we also have{(

L(v), L(w)
) | (v, w) ∈ F1

}
= E(π)c = E(πc). (3)

Hence we have both L : (V, F ) ∼= D(π) and L : (V, F1) ∼= D(πc).

Given a permutation digraph D = (V, F ), with underlying undirected graph G,
this algorithm defines a function

Φ : {transitive orientations on Gc} → {permutations represented by D}.
Now Φ is surjective, for assume π is represented by D = (V, F ). By definition, there
exists a bijection L : V → {1, . . . , n} that is an isomorphism D → D(π). Applying
L−1 to the vertices of D(πc) induces a transitive orientation F1 on Gc, and it is clear
that F ∪ F1 will induce π. However, Φ is not injective, as can be seen by letting D
be the null digraph on n (labeled) vertices. In this case, Gc is complete, and has n!
different transitive orientations. However, the only permutation D represents is the
identity in Sn. The following proposition gives a necessary and sufficient condition
for Φ to take two transitive orientations of Gc to the same permutation.

Proposition 5.5. Let D = (V, F ) be a permutation digraph with underlying undi-
rected graph G, and let F1, F2 be two transitive orientations on Gc. Then F ∪F1 and
F ∪F2 induce the same permutation if and only if there exists a bijection f : V → V
such that f : (V, F ) → (V, F ) and f : (V, F1) → (V, F2) are both digraph isomor-
phisms.

Proof. Let L1, L2 : V → {1, 2, . . . , n} be the labeling functions associated with F∪F1,
F ∪F2 respectively. First assume F ∪F1 and F ∪F2 both induce π. Let f = L2

−1◦L1;
this is a bijection V → V . By equation (2),

(v, w) ∈ F ⇐⇒ (L1(v), L1(w)) ∈ E(π)

⇐⇒ (L2
−1 ◦ L1(x), L2

−1 ◦ L1(x)) = (f(v), f(w)) ∈ F.

Similarly, by equation (3),

(x, y) ∈ F1 ⇐⇒ (L1(x), L1(y)) ∈ E(π)c

⇐⇒ (L2
−1 ◦ L1(x), L2

−1 ◦ L1(y)) = (f(x), f(y)) ∈ F2.
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Conversely, assume g : V → V is a digraph isomorphism (V, F ) → (V, F ) and
(V, F1) → (V, F2). Then L2 ◦ g ◦ L−1

1 : {1, . . . , n} → {1, . . . , n} is a bijection.
Moreover, for all distinct i, j ∈ {1, . . . , n}, equation (1) gives

i < j ⇐⇒ (L1
−1(i), L1

−1(j)) ∈ F ∪ F1

⇐⇒ (g ◦ L1
−1(i), g ◦ L1

−1(j)) ∈ F ∪ F2

⇐⇒ [L2 ◦ g ◦ L1
−1](i) < [L2 ◦ g ◦ L1

−1](j).

The only order-preserving bijection on a finite totally ordered set is the identity,
implying L1 = L2 ◦ g. Combining this with the fact that g is an isomorphism on
(V, F ), we get{(

L1(v), L1(w)
) | (v, w) ∈ F

}
=

{(
L2 ◦ g(v), L2 ◦ g(w)

) | (v, w) ∈ F
}

=
{(

L2 ◦ g(v), L2 ◦ g(w)
) | (g(v), g(w)) ∈ F

}
=

{(
L2(x), L2(y)

) | (x, y) ∈ F
}
.

Hence the permutation induced by F ∪F1 has the same inversion set as (and thus is
equal to) the permutation induced by F ∪ F2.

Applying this to the case where D is the null graph, recall that up to isomorphism,
there is only one transitive orientation on Kn. Moreover, any bijection on the vertices
is also an isomorphism on D. In this extreme case, the vertices are indistinguishable
in both D and Gc. The following theorem generalizes from indistinguishable vertices
to indistinguishable submodules.

Theorem 5.6. Let D = (V, F ) be a permutation digraph, with underlying undirected
graph G. Let M be a degenerate 0-node of G, with C = {X1, X2, . . . , Xm} being a set
of children of M that induce isomorphic directed subgraphs of D; let gij denote an
isomorphism D[Xi] → D[Xj]. For any ρ ∈ Sm, define fρ : V → V by:

fρ(v) =

{
giρ(i)(v), if v ∈ Xi for some 1 ≤ i ≤ m,

v, if v /∈ C.

For any transitive orientation F1 on Gc, define another orientation F2 by(
fρ(v), fρ(w)

) ∈ F2 ⇐⇒ (v, w) ∈ F1.

Then F2 is also a transitive orientation on Gc. Moreover, F ∪F1 and F ∪F2 induce
the same permutation.

Proof. First we show that fρ is a digraph isomorphism D → D. Since fρ is the
identity outside

⋃ C, we need only consider arcs with at least one endvertex in
⋃ C.

Since M is a degenerate 0-node of G, no vertices in different children of M are
adjacent, so we have only the following two cases.
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1. If v, w ∈ Xi, then use the fact that fρ|Xi
= giρ(i) is an isomorphism.

2. If v ∈ Xi and w /∈ ⋃ C, then w must belong to another module M ′. If v, w are
adjacent in G, then M and M ′ must either be adjacent children of some other
node, or submodules of adjacent children of some other node. In either case,
by Lemma 5.2, all edges between vertices in M ′ and M are oriented the same
way in F . Thus (v, w) ∈ F if and only if

(
fρ(v), fρ(w)

)
=

(
fρ(v), w) ∈ F .

Ignoring orientation, fρ is a graph isomorphism G → G, and so also Gc → Gc.
By construction, fρ will be a digraph isomorphism (V, F1) → (V, F2). Since F1 is
transitive, F2 must also be transitive. Now apply Proposition 5.5.

Example 5.7. Figure 12 shows a permutation digraph D1, the complement of the
underlying undirected graph, Gc

1, and its modular decomposition tree. The root node
V is a degenerate 0-node of G1 with 3 children; {v, w} and {x, y} are degenerate 1-
nodes of G1. Hence, V is a degenerate 1-node of Gc

1 with 3 children; {v, w} and
{x, y} are degenerate 0-nodes of Gc

1. By Corollary 5.4, the total number of different
transitive orientations on Gc

1 is 3! = 6. However, {v, w} and {x, y} induce isomorphic
directed subgraphs of D1, so by Theorem 5.6, orientations on Gc

1 that differ only by a
permutation of these 2 modules induce the same permutation. Hence D1 represents
no more than 6/2! = 3 permutations.

u

v

x w

y

{u, v, w, x, y}

D

u

v

x w

y

G c

{u} {x, y}

{v} {w}

{v, w}

{x} {y}

1 1

Figure 12: Example 5.7

Example 5.8. In Figure 13, V is still a degenerate 1-node of Gc
2 with 3 children;

{w, x, y} is a degenerate 0-node and {w, y} is a degenerate 1-node with 2 children.
By Corollary 5.4, the total number of different transitive orientations on Gc

2 is 3! ·
2! = 12. Since {u}, {v} are isomorphic children of V , and {w}, {y} are isomorphic
children of {w, y}, by Theorem 5.6 (applied to both D2 and D2[{w, y}]), D2 represents
12/(2! · 2!) = 3 permutations.

Note that D1 is isomorphic to its own reverse −D1. By Theorem 3.17, the
permutations represented by D1 constitute one geo-equivalence class of S5; in fact,
it is class 2.4 in Table 2. On the other hand, D2 is not isomorphic to −D2; the
same argument as above shows that −D2 also represents 3 permutations. Hence the
geo-equivalence class of permutations represented by either D2 or −D2 contains 6
permutations; it is class 2.3 in Table 2.
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Figure 13: Example 5.8

A cograph is any graph whose modular decomposition tree contains no prime
nodes. As pointed out by Gallai, such graphs and their complements are always tran-
sitively orientable, and hence all cographs are permutation graphs. (The underlying
undirected graphs in Examples 5.7 and 5.8 are both cographs.) As noted earlier, in [7]
Guruswami gives a generating function for the number of non-isomorphic cographs
on n vertices; in the same paper, he also shows that the number of π ∈ Sn such that
G(π) is a cograph is rn−1, where (rn) is the sequence of (large) Schröder numbers
(A006318 in the Online Encyclopedia of Integer Sequences [12]). Theorem 5.6 allows
us to determine the size of the geo-equivalence class of any such permutation.

Corollary 5.9. Let π ∈ Sn such that G(π) = G is a cograph, and let D(π) = D be
the corresponding permutation digraph. Suppose the internal nodes of the modular
decomposition tree of G consist of:

• degenerate 1-nodes N1, . . . , Nt;

• degenerate 0-nodes M1, . . . , Mr.

Suppose further that Mi has ki children, which we divide up into isomorphism classes
according to the directed subgraphs they induce in D: ni1 children of isomorphism
type 1, ni2 children of isomorphism type 2, . . . and nit children of isomorphism type
t. Then the number of permutations represented by D is

n(D) =

r∏
i=1

ki!

ni1!ni2! · · · nit!
.

The size of the geo-equivalence class [π] is 2n(D), unless D ∼= −D, in which case it
is n(D).

However, the probability that a permutation has a cograph as its permutation
graph approaches zero (the entry for A00103 in OEIS [12] gives the asymptotic
behavior of the Schröder numbers). Thus we now turn our attention to prime nodes.
We begin with a lemma that gives a new perspective on the result of Corollary 3.14.

Lemma 5.10. Let G be a permutation graph and let F, F1 be transitive orientations
on G, Gc respectively. If F ∪ F1 induces π, then:

1. −F ∪ F1 induces π−1;
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2. F ∪ −F1 induces ((πc)−1)c;

3. −F ∪ −F1 induces (((πc)−1)c)−1.

Proof. Let L be the unique vertex labeling function corresponding to F ∪ F1. For
part 1, we first show that π−1◦L is the unique vertex labeling function corresponding
to (−F ) ∪ F1; that is,

π−1 ◦ L(v) < π−1 ◦ L(w) ⇐⇒ (v, w) ∈ −F ∪ F1.

Assume π−1 ◦ L(v) < π−1 ◦ L(w).

• If L(v) > L(w), then by definition (L(w), L(v)) ∈ E(π), and so by (2),
(w, v) ∈ F and hence (v, w) ∈ −F .

• If L(v) < L(w), then (L(v), L(w)) /∈ E(π), so (L(v), L(w)) ∈ E(πc) and thus
by (3), (v, w) ∈ F1.

Conversely, assume (v, w) ∈ −F ∪ F1.

• If (v, w) ∈ −F , then (w, v) ∈ F and so by (2), (L(w), L(v)) ∈ E(π). By
Corollary 3.11,

(
π−1 ◦L(v), π−1 ◦L(w)

) ∈ E(π−1). For this to be an inversion,
it must be that π−1 ◦ L(v) < π−1 ◦ L(w).

• If (v, w) ∈ F1, then by (3), (L(v), L(w)) ∈ E(πc) = E(π)c. Since (L(v), L(w))
is not an inversion of π, π−1 ◦ L(v) < π−1 ◦ L(w).

The permutation defined by π−1 ◦ L has inversion set{(
π−1 ◦ L(v), π−1 ◦ L(w)

) | (v, w) ∈ −F
}

=
{(

π−1 ◦ L(v), π−1 ◦ L(w)
) | (w, v) ∈ F

}
=

{(
π−1(L(v)), π−1(L(w))

) | (L(w), L(v)) ∈ E(π)
}

= π−1 ∗ E(π) = E(π−1),

since the action of π−1 on E(π) is order-reversing.

We can prove part 2 similarly by showing that (πc)−1 ◦ L is the unique vertex
labeling function corresponding to F ∪ (−F1). To show that the corresponding in-
version set is that of ((πc)−1)c, recall (from Corollary 3.13) that the action of (πc)−1

on E(π) is order-preserving. Part 3 follows from parts 1 and 2.

Proposition 5.11. Let π ∈ Sn such that G(π) = G = (V, E) has only trivial
modules, with V being a prime node in the modular decomposition of G. Then [π] is
a multiset of the form {

π, π−1, ((πc)−1)c, (((πc)−1)c)−1
}
,

which may contain four, two or one distinct permutation(s). Moreover, this is the
only geo-equivalence class of Sn represented by a transitive orientation of G.
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Proof. Let D(π) = (V, F ) and D(πc) = (V, F1). By Proposition 5.3, both G and Gc

are uniquely orientable, so F,−F and F1,−F1 are the only two transitive orientations
on G and Gc respectively. By Lemma 5.10, D represents only π and ((πc)−1)c and
−D represents only π−1 and (((πc)−1)c)−1.

It is possible that D ∼= −D; in that case, there exists a bijection f : V → V
such that (u, v) ∈ F ⇐⇒ (

f(u), f(v)
) ∈ −F ⇐⇒ (

f(v), f(u)
) ∈ F. Now f

is also a graph isomorphism on Gc and so {(f(x), f(y))|(x, y) ∈ F1} constitutes a
transitive orientation on Gc. Since Gc is uniquely orientable, it can only be either
F1 or −F1. In the first case, f : (V, F ∪ F1) ∼= (V,−F ∪ F1); reversing orientations
everywhere, we also get f : (V,−F ∪−F1) ∼= (V, F ∪−F1). Lemma 5.10 implies that
π = π−1 and ((πc)−1)c)−1 = (πc)−1)c. In the second case,

f : (V, F ∪ F1) ∼= (V,−F ∪ −F1)

and so by Lemma 5.10, π = (((πc)−1)c)−1, which (purely algebraically) implies π−1 =
((πc)−1)c. Figure 14 shows one example of each case; for both examples, f(u) =
u, f(v) = y, f(w) = x, f(x) = w and f(y) = v.

F

u

v

x w

y

F1

u

v

wx

F

u

v

x w

y

F1

u

v

wx

≈ (V, -F F )1 ≈ (V, -F -F )1

yy

π = π = 42513-1 π =(((π ) ) ) = 25314-1c c -1

π =((π ) ) = 41352-1 cc -1((π ) ) =(((π ) ) ) = 35142c c c-1 -1c -1

(V, F F )1 (V, F F )1

Figure 14: Permutation graphs representing exactly two permutations.

If D 	∼= −D but (V, F1) ∼= (V,−F1), then an analogous argument shows that either
π = ((πc)−1)c and π−1 = (((πc)−1)c)−1, or π = (((πc)−1)c)−1 and π−1 = ((πc)−1)c.

A third possibility is that

(V, F ∪ F1) ∼= (V,−F ∪ F1) ∼= (V, F ∪ −F1) ∼= (V,−F ∪ −F1),

in which case all four permutations are equal. We leave it to the reader to verify
that this situation occurs with the permutation graph in Figure 15.

We now consider the situation where a prime node is one of several internal nodes
in the modular decomposition tree. By Corollary 5.4, each prime node contributes a
factor of 2 to the number of different transitive orientations on Gc. However, it may
contribute only a factor of 1 to the number of unrelated transitive orientations, as in
the rather detailed special case described below.
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G G c

Figure 15: A permutation graph representing [351624] = {351624}.

Theorem 5.12. Let D = (V, F ) be a permutation digraph, with underlying undi-
rected graph G. Let P be a prime node of G, with children V P = {X1, X2, . . . , Xp}.
Let Q(P ), Qc(P ) denote the corresponding quotient graphs of G, Gc respectively. Let
F P ,−F P denote the (only) two transitive orientations on Q(P ) and let F1

P ,−F1
P

denote the two transitive orientations on Qc(P ). Assume that there exists a bijection
fP : V P → V P such that :

• fP : (V P , F P ) → (V P , F P ) and fP : (V P , F1
P ) → (V P ,−F1

P ) are both digraph
isomorphisms, and

• for all 1 ≤ i ≤ p, Xi and fP (Xi) induce isomorphic subgraphs of D.

Let gi : D[Xi] → D[fP (Xi)] be a digraph isomorphism. Define f : V → V by:

f(v) =

{
gi(v), if v ∈ Xi for some 1 ≤ i ≤ p,

v, otherwise.

For any transitive orientation F1 on Gc, define another orientation F2 by(
f(v), f(w)

) ∈ F2 ⇐⇒ (v, w) ∈ F1.

Then F2 is also a transitive orientation on Gc. Moreover, F ∪F1 and F ∪F2 induce
the same permutation.

Proof. First we show that f is a digraph isomorphism D → D. Again, we only
consider arcs with at least one endvertex in P , but there are now three cases.

1. If v, w ∈ Xi, then use the fact that f |Xi
= gi is an isomorphism.

2. If v ∈ Xi, w ∈ Xj, then use the assumption that fP is an isomorphism on
(V P , F P ) and Lemma 5.2.

3. If v ∈ Xi and w /∈ P , then use the same argument as in the proof of Theo-
rem 5.6.

The rest of the proof is exactly the same as that of Theorem 5.6.
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Example 5.13. In Figure 16, the modular decomposition tree of Gc has the root
node V = P as a prime node, X1 = {s, t} as a degenerate 0-node and X2 = {w, x},
X3 = {y, z} as degenerate 1-nodes. Thus by Corollary 5.4, there are 2 · 2! · 2! = 8
different transitive orientations on Gc, but we can show that they all induce the
same permutation represented by D. First, orientations on Gc that differ only by
the orientations on X2 and X3 induce the same permutation by Theorem 5.6. Next,
define a bijection on the set of children of the prime node V P by

fP (X1) = X1, fP ({u}) = {v}, fP ({v}) = {u}, fP (X2) = X3, fP (X3) = X2.

It is easy to verify that fP is a digraph isomorphism both (V P , F P ) → (V P , F P ) and
(V P , F1

P ) → (V P ,−F1
P ). Let g1 be the identity on X1, and let g2 : X2 → X3 and

g3 : X3 → X2 be any bijections. Constructing f : V → V as in Theorem 5.12 (with
f(u) = v and f(v) = u), we conclude that any two orientations on Gc that differ only
in that the orientation on Qc(P ) is reversed induce the same permutation. (Note
that in this example, D 	∼= −D, so the geo-equivalence class [π] contains exactly two
permutations, namely π and π−1.)

w

D Gc

u v

ts

x y
z

u v

ts

x y
zw

{s, t, u, v, w, x, y, z}

{u} {y, z}

{t} {w}

{w, x}

{x} {y}

{s, t} {v}

{z}{s}

Figure 16: A permutation digraph D representing only π = 51284367.

6 Open Questions

1. Is there a (closed or recursive) formula for an, the number of geo-equivalence
classes of Sn (equivalently, the number of elements of K2,n)?

2. As shown in [1], Sn is a graded lattice under the weak left Bruhat order, with
the number of inversions serving as a rank function (i.e. if π covers σ, then
|E(π)| = |E(σ)| + 1). Certainly [Sn] is not a lattice; Figure 11 shows that
classes 8.3 and 8.1 both have classes 9.1 and 9.2 as suprema (and classes 9.1
and 9.2 have both 8.1 and 8.3 as infima). However, [Sn] is a graded poset
for n ≤ 5, with the number of inversions as a rank function. Rephrasing this
using Theorem 2.2, the number of edge crossings serves as a rank function in
the homomorphism poset K2,n, for n ≤ 5. In [3], Boutin, Cockburn, Dean
and Margea show that the homomorphism posets for paths Pn, cycles Cn and
cliques Kn are graded posets with the number of edge crossings as rank function
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for n ≤ 5, but not for n = 6. In fact, for all n ≥ 6, Pn and Cn are not graded
posets. Is [Sn] a graded poset for all n?

Acknowledgements

I am indebted to several people for their help with this paper. Debra Boutin and
Alice Dean contributed to the proof that every realization of K2,n is geo-isomorphic
to K2,n(π) for some π ∈ Sn. At the University of Victoria, Peter Dukes and Dennis
Eppel both provided feedback and support. Thanks also to Rick Decker at Hamilton
College for writing C++ code to compute the number of geo-equivalence classes for
n = 7, 8 and 9.

Appendix: The Geo-Equivalence Classes of S5

We give below the partitioning of S5 into geo-equivalence classes. As in Table 1,
permutations corresponding to opposite orientations of the underlying graph are
separated by a diagonal slash. Unlike Table 1, this table does not include diagrams
of each possible oriented digraph, to save space.

Table 2: Geo-equivalence classes of S5.

inversions class label permutations

0 0.1 12345

1 1.1 12354, 12435, 13245, 21345

2 2.1 12453, 13425, 23145 / 12534, 14235, 31245

2.2 13254, 21354, 21435

3 3.1 13452, 23415 / 15234, 41235

3.2 13524, 24135 / 14253, 31425

3.3 12543, 14325, 32145

3.4 21453, 23154 / 21534, 31254

4 4.1 23451 / 51234

4.2 13542, 14352, 24315, 32415 / 15234, 15324, 41325, 42135

4.3 23514, 31452 / 41253, 25134

4.4 24153 / 31524

4.5 14523, 34125

4.6 32154, 21543

5 5.1 23541, 24351, 32451 / 51243, 51324, 52134

5.2 34152, 24513 / 35124, 41523

continued on next page



THE HOMOMORPHISM POSET OF K2,n 107

continued from previous page

inversions class label permutations

5.3 25314 / 41352

5.4 32514, 31542 / 42153, 25143

5.5 14532, 34215 / 15423, 43125

5.6 15342, 42315

6 6.1 32541 / 52143

6.2 34512 / 45123

6.3 25413, 43152 / 41532, 35214

6.4 15432, 43215

6.5 35142, 42513

6.6 24531, 34251 / 51423, 53124

6.7 25341, 42351 / 51342, 52314

7 7.1 25431, 43251 / 51432, 53214

7.2 35412, 43512 / 45132, 45213

7.3 42531, 35241 / 52413, 53142

7.4 34521 / 54123

7.5 52341

8 8.1 35421, 43521 / 54132, 54213

8.2 52431, 53241

8.3 45231 / 53412

8.4 45312

9 9.1 45321/ 54312

9.2 53421 / 54231

10 10.1 54321
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